BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 26507106)

  • 1. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.
    Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G
    Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
    Walker XJ; Mack MC; Johnstone JF
    Glob Chang Biol; 2015 Aug; 21(8):3102-13. PubMed ID: 25683740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.
    Girardin MP; Guo XJ; De Jong R; Kinnard C; Bernier P; Raulier F
    Glob Chang Biol; 2014 Mar; 20(3):851-66. PubMed ID: 24115302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization.
    Girardin MP; Bouriaud O; Hogg EH; Kurz W; Zimmermann NE; Metsaranta JM; de Jong R; Frank DC; Esper J; Büntgen U; Guo XJ; Bhatti J
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8406-E8414. PubMed ID: 27956624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New tree-ring data from Canadian boreal and hemi-boreal forests provide insight for improving the climate sensitivity of terrestrial biosphere models.
    Mirabel A; Girardin MP; Metsaranta J; Campbell EM; Arsenault A; Reich PB; Way D
    Sci Total Environ; 2022 Dec; 851(Pt 2):158062. PubMed ID: 35981579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada.
    Hogg EH; Michaelian M; Hook TI; Undershultz ME
    Glob Chang Biol; 2017 Dec; 23(12):5297-5308. PubMed ID: 28636146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Northeastern North America as a potential refugium for boreal forests in a warming climate.
    D'Orangeville L; Duchesne L; Houle D; Kneeshaw D; Côté B; Pederson N
    Science; 2016 Jun; 352(6292):1452-5. PubMed ID: 27313044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site index as a predictor of the effect of climate warming on boreal tree growth.
    Pau M; Gauthier S; Chavardès RD; Girardin MP; Marchand W; Bergeron Y
    Glob Chang Biol; 2022 Mar; 28(5):1903-1918. PubMed ID: 34873797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.
    Eastaugh CS; Pötzelsberger E; Hasenauer H
    Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales.
    Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O
    Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings.
    Nicklen EF; Roland CA; Csank AZ; Wilmking M; Ruess RW; Muldoon LA
    Glob Chang Biol; 2019 Mar; 25(3):911-926. PubMed ID: 30408264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.
    Trahan MW; Schubert BA
    Glob Chang Biol; 2016 Feb; 22(2):782-91. PubMed ID: 26451763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting acclimation responses to elevated CO
    Dusenge ME; Madhavji S; Way DA
    Glob Chang Biol; 2020 Jun; 26(6):3639-3657. PubMed ID: 32181545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests.
    Grant RF
    Tree Physiol; 2004 Jan; 24(1):1-18. PubMed ID: 14652210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.
    Kang S; Kimball JS; Running SW
    Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology†.
    Jensen AM; Warren JM; King AW; Ricciuto DM; Hanson PJ; Wullschleger SD
    Tree Physiol; 2019 Apr; 39(4):556-572. PubMed ID: 30668859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?
    Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S
    Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.
    Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR
    Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.