These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 26507112)
1. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Stull GW; Duno de Stefano R; Soltis DE; Soltis PS Am J Bot; 2015 Nov; 102(11):1794-813. PubMed ID: 26507112 [TBL] [Abstract][Full Text] [Related]
3. Flower and fruit characters in the early-divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. González FA; Rudall PJ Am J Bot; 2010 Feb; 97(2):191-206. PubMed ID: 21622379 [TBL] [Abstract][Full Text] [Related]
4. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Stull GW; Soltis PS; Soltis DE; Gitzendanner MA; Smith SA Am J Bot; 2020 May; 107(5):790-805. PubMed ID: 32406108 [TBL] [Abstract][Full Text] [Related]
5. Floral structure of Emmotum (Icacinaceae sensu stricto or Emmotaceae), a phylogenetically isolated genus of lamiids with a unique pseudotrimerous gynoecium, bitegmic ovules and monosporangiate thecae. Endress PK; Rapini A Ann Bot; 2014 Oct; 114(5):945-59. PubMed ID: 25139428 [TBL] [Abstract][Full Text] [Related]
6. A chloroplast tree for Viburnum (Adoxaceae) and its implications for phylogenetic classification and character evolution. Clement WL; Arakaki M; Sweeney PW; Edwards EJ; Donoghue MJ Am J Bot; 2014 Jun; 101(6):1029-1049. PubMed ID: 24928633 [TBL] [Abstract][Full Text] [Related]
7. Plastid phylogenomics and adaptive evolution of Gaultheria series Trichophyllae (Ericaceae), a clade from sky islands of the Himalaya-Hengduan Mountains. Zhang MY; Fritsch PW; Ma PF; Wang H; Lu L; Li DZ Mol Phylogenet Evol; 2017 May; 110():7-18. PubMed ID: 28215572 [TBL] [Abstract][Full Text] [Related]
8. Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Zhang C; Zhang T; Luebert F; Xiang Y; Huang CH; Hu Y; Rees M; Frohlich MW; Qi J; Weigend M; Ma H Mol Biol Evol; 2020 Nov; 37(11):3188-3210. PubMed ID: 32652014 [TBL] [Abstract][Full Text] [Related]
9. Character evolution and missing (morphological) data across Asteridae. Stull GW; Schori M; Soltis DE; Soltis PS Am J Bot; 2018 Mar; 105(3):470-479. PubMed ID: 29656519 [TBL] [Abstract][Full Text] [Related]
10. Phylogeny of Diplazium (Athyriaceae) revisited: Resolving the backbone relationships based on plastid genomes and phylogenetic tree space analysis. Wei R; Zhang XC Mol Phylogenet Evol; 2020 Feb; 143():106699. PubMed ID: 31809851 [TBL] [Abstract][Full Text] [Related]
12. A plastid DNA phylogeny of tribe Miliuseae: insights into relationships and character evolution in one of the most recalcitrant major clades of Annonaceae. Chaowasku T; Thomas DC; van der Ham RW; Smets EF; Mols JB; Chatrou LW Am J Bot; 2014 Apr; 101(4):691-709. PubMed ID: 24688057 [TBL] [Abstract][Full Text] [Related]
13. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Olmstead RG; Kim KJ; Jansen RK; Wagstaff SJ Mol Phylogenet Evol; 2000 Jul; 16(1):96-112. PubMed ID: 10877943 [TBL] [Abstract][Full Text] [Related]
14. Complete plastid genome sequence of the basal asterid Ardisia polysticta Miq. and comparative analyses of asterid plastid genomes. Ku C; Hu JM; Kuo CH PLoS One; 2013; 8(4):e62548. PubMed ID: 23638113 [TBL] [Abstract][Full Text] [Related]
15. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. Cai Z; Penaflor C; Kuehl JV; Leebens-Mack J; Carlson JE; dePamphilis CW; Boore JL; Jansen RK BMC Evol Biol; 2006 Oct; 6():77. PubMed ID: 17020608 [TBL] [Abstract][Full Text] [Related]
16. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Oxelman B; Yoshikawa N; McConaughy BL; Luo J; Denton AL; Hall BD Mol Phylogenet Evol; 2004 Aug; 32(2):462-79. PubMed ID: 15223030 [TBL] [Abstract][Full Text] [Related]
17. Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Yan M; Fritsch PW; Moore MJ; Feng T; Meng A; Yang J; Deng T; Zhao C; Yao X; Sun H; Wang H Mol Phylogenet Evol; 2018 Apr; 121():198-211. PubMed ID: 29360618 [TBL] [Abstract][Full Text] [Related]
18. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438 [TBL] [Abstract][Full Text] [Related]
19. Improving phylogenetic resolution of the Lamiales using the complete plastome sequences of six Penstemon species. Stettler JM; Stevens MR; Meservey LM; Crump WW; Grow JD; Porter SJ; Love LS; Maughan PJ; Jellen EN PLoS One; 2021; 16(12):e0261143. PubMed ID: 34910738 [TBL] [Abstract][Full Text] [Related]
20. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Jansen RK; Cai Z; Raubeson LA; Daniell H; Depamphilis CW; Leebens-Mack J; Müller KF; Guisinger-Bellian M; Haberle RC; Hansen AK; Chumley TW; Lee SB; Peery R; McNeal JR; Kuehl JV; Boore JL Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19369-74. PubMed ID: 18048330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]