BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 26507230)

  • 1. A Molecular-Level Landscape of Diet-Gut Microbiome Interactions: Toward Dietary Interventions Targeting Bacterial Genes.
    Ni Y; Li J; Panagiotou G
    mBio; 2015 Oct; 6(6):e01263-15. PubMed ID: 26507230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.
    Maier TV; Lucio M; Lee LH; VerBerkmoes NC; Brislawn CJ; Bernhardt J; Lamendella R; McDermott JE; Bergeron N; Heinzmann SS; Morton JT; González A; Ackermann G; Knight R; Riedel K; Krauss RM; Schmitt-Kopplin P; Jansson JK
    mBio; 2017 Oct; 8(5):. PubMed ID: 29042495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of metabolic potential of human gut microbiome in human nutrition.
    Yadav M; Verma MK; Chauhan NS
    Arch Microbiol; 2018 Mar; 200(2):203-217. PubMed ID: 29188341
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Theilmann MC; Goh YJ; Nielsen KF; Klaenhammer TR; Barrangou R; Abou Hachem M
    mBio; 2017 Nov; 8(6):. PubMed ID: 29162708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancient
    Shondelmyer K; Knight R; Sanivarapu A; Ogino S; Vanamala JKP
    Yale J Biol Med; 2018 Jun; 91(2):177-184. PubMed ID: 29955222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling.
    Lau JT; Whelan FJ; Herath I; Lee CH; Collins SM; Bercik P; Surette MG
    Genome Med; 2016 Jul; 8(1):72. PubMed ID: 27363992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes.
    Clark A; Mach N
    J Int Soc Sports Nutr; 2016; 13():43. PubMed ID: 27924137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry.
    Chittim CL; Irwin SM; Balskus EP
    Biochemistry; 2018 May; 57(18):2567-2577. PubMed ID: 29669199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiome interactions shape host fitness.
    Gould AL; Zhang V; Lamberti L; Jones EW; Obadia B; Korasidis N; Gavryushkin A; Carlson JM; Beerenwinkel N; Ludington WB
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11951-E11960. PubMed ID: 30510004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.
    Wong S; Stephens WZ; Burns AR; Stagaman K; David LA; Bohannan BJ; Guillemin K; Rawls JF
    mBio; 2015 Sep; 6(5):e00687-15. PubMed ID: 26419876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.
    Etxeberria U; Arias N; Boqué N; Macarulla MT; Portillo MP; Martínez JA; Milagro FI
    J Nutr Biochem; 2015 Jun; 26(6):651-60. PubMed ID: 25762527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Captivity humanizes the primate microbiome.
    Clayton JB; Vangay P; Huang H; Ward T; Hillmann BM; Al-Ghalith GA; Travis DA; Long HT; Tuan BV; Minh VV; Cabana F; Nadler T; Toddes B; Murphy T; Glander KE; Johnson TJ; Knights D
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10376-81. PubMed ID: 27573830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Our gut microbiota: a long walk to homeostasis.
    Dicks LMT; Geldenhuys J; Mikkelsen LS; Brandsborg E; Marcotte H
    Benef Microbes; 2018 Jan; 9(1):3-20. PubMed ID: 29022388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prebiotic effects: metabolic and health benefits.
    Roberfroid M; Gibson GR; Hoyles L; McCartney AL; Rastall R; Rowland I; Wolvers D; Watzl B; Szajewska H; Stahl B; Guarner F; Respondek F; Whelan K; Coxam V; Davicco MJ; Léotoing L; Wittrant Y; Delzenne NM; Cani PD; Neyrinck AM; Meheust A
    Br J Nutr; 2010 Aug; 104 Suppl 2():S1-63. PubMed ID: 20920376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time for food: The impact of diet on gut microbiota and human health.
    Zhang N; Ju Z; Zuo T
    Nutrition; 2018; 51-52():80-85. PubMed ID: 29621737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions.
    Li Q; Lauber CL; Czarnecki-Maulden G; Pan Y; Hannah SS
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering the composition of microbial community structure and metagenomics among three gut locations in pigs with distinct fatness.
    Yang H; Huang X; Fang S; Xin W; Huang L; Chen C
    Sci Rep; 2016 Jun; 6():27427. PubMed ID: 27255518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.
    Heintz-Buschart A; May P; Laczny CC; Lebrun LA; Bellora C; Krishna A; Wampach L; Schneider JG; Hogan A; de Beaufort C; Wilmes P
    Nat Microbiol; 2016 Oct; 2():16180. PubMed ID: 27723761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.
    Xiong W; Brown CT; Morowitz MJ; Banfield JF; Hettich RL
    Microbiome; 2017 Jul; 5(1):72. PubMed ID: 28693612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planting the Microbiome.
    Spinler JK; Karri V; Hirschi KD
    Trends Microbiol; 2019 Feb; 27(2):90-93. PubMed ID: 30600139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.