BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26507346)

  • 21. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.
    Yazaydin AO; Snurr RQ; Park TH; Koh K; Liu J; Levan MD; Benin AI; Jakubczak P; Lanuza M; Galloway DB; Low JJ; Willis RR
    J Am Chem Soc; 2009 Dec; 131(51):18198-9. PubMed ID: 19954193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tailoring metal-organic frameworks for CO2 capture: the amino effect.
    Vitillo JG; Savonnet M; Ricchiardi G; Bordiga S
    ChemSusChem; 2011 Sep; 4(9):1281-90. PubMed ID: 21922680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability.
    Qian D; Lei C; Hao GP; Li WC; Lu AH
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6125-32. PubMed ID: 23072343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane.
    Alonso A; Moral-Vico J; Abo Markeb A; Busquets-Fité M; Komilis D; Puntes V; Sánchez A; Font X
    Sci Total Environ; 2017 Oct; 595():51-62. PubMed ID: 28376428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes.
    Pirngruber GD; Hamon L; Bourrelly S; Llewellyn PL; Lenoir E; Guillerm V; Serre C; Devic T
    ChemSusChem; 2012 Apr; 5(4):762-76. PubMed ID: 22438338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical Mesoporous Metal-Organic Frameworks for Enhanced CO2 Capture.
    Mao Y; Chen D; Hu P; Guo Y; Ying Y; Ying W; Peng X
    Chemistry; 2015 Oct; 21(43):15127-32. PubMed ID: 26471435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units.
    He Y; Li B; O'Keeffe M; Chen B
    Chem Soc Rev; 2014 Aug; 43(16):5618-56. PubMed ID: 24705653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon- and Nitrogen-Based Organic Frameworks.
    Sakaushi K; Antonietti M
    Acc Chem Res; 2015 Jun; 48(6):1591-600. PubMed ID: 26000989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microporous carbon adsorbents with high CO2 capacities for industrial applications.
    Builes S; Roussel T; Ghimbeu CM; Parmentier J; Gadiou R; Vix-Guterl C; Vega LF
    Phys Chem Chem Phys; 2011 Sep; 13(35):16063-70. PubMed ID: 21822505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico discovery of metal-organic frameworks for precombustion CO
    Chung YG; Gómez-Gualdrón DA; Li P; Leperi KT; Deria P; Zhang H; Vermeulen NA; Stoddart JF; You F; Hupp JT; Farha OK; Snurr RQ
    Sci Adv; 2016 Oct; 2(10):e1600909. PubMed ID: 27757420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO(2) capture from dilute gases as a component of modern global carbon management.
    Jones CW
    Annu Rev Chem Biomol Eng; 2011; 2():31-52. PubMed ID: 22432609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship.
    Adil K; Belmabkhout Y; Pillai RS; Cadiau A; Bhatt PM; Assen AH; Maurin G; Eddaoudi M
    Chem Soc Rev; 2017 Jun; 46(11):3402-3430. PubMed ID: 28555216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks.
    Yang Q; Guillerm V; Ragon F; Wiersum AD; Llewellyn PL; Zhong C; Devic T; Serre C; Maurin G
    Chem Commun (Camb); 2012 Oct; 48(79):9831-3. PubMed ID: 22932495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanded organic building units for the construction of highly porous metal-organic frameworks.
    Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD
    Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Holey graphene frameworks for highly selective post-combustion carbon capture.
    Chowdhury S; Balasubramanian R
    Sci Rep; 2016 Feb; 6():21537. PubMed ID: 26879393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.