These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2650740)
1. On the description of neuronal output properties using spike train data. Awiszus F Biol Cybern; 1989; 60(5):323-33. PubMed ID: 2650740 [TBL] [Abstract][Full Text] [Related]
2. Continuous functions determined by spike trains of a neuron subject to stimulation. Awiszus F Biol Cybern; 1988; 58(5):321-7. PubMed ID: 3382703 [TBL] [Abstract][Full Text] [Related]
3. Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs. Hasegawa H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):718-26. PubMed ID: 11046315 [TBL] [Abstract][Full Text] [Related]
4. The adaptation ability of neuronal models subject to a current step stimulus. Awiszus F Biol Cybern; 1988; 59(4-5):295-302. PubMed ID: 3196774 [TBL] [Abstract][Full Text] [Related]
5. Continuous functions for the analysis of sensory transduction. Awiszus F Biol Cybern; 1989; 61(2):153-61. PubMed ID: 2742919 [TBL] [Abstract][Full Text] [Related]
6. Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Ly C; Tranchina D Neural Comput; 2009 Feb; 21(2):360-96. PubMed ID: 19431264 [TBL] [Abstract][Full Text] [Related]
7. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
8. Spike trains in a stochastic Hodgkin-Huxley system. Henry C T Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832 [TBL] [Abstract][Full Text] [Related]
9. Quantification and statistical verification of neuronal stimulus responses from noisy spike train data. Awiszus F Biol Cybern; 1993; 68(3):267-74. PubMed ID: 8452896 [TBL] [Abstract][Full Text] [Related]
10. Spike patterning in oxytocin neurons: Capturing physiological behaviour with Hodgkin-Huxley and integrate-and-fire models. Leng T; Leng G; MacGregor DJ PLoS One; 2017; 12(7):e0180368. PubMed ID: 28683135 [TBL] [Abstract][Full Text] [Related]
11. On the role of subthreshold dynamics in neuronal signaling. Clay JR; Shrier A J Theor Biol; 1999 Mar; 197(2):207-16. PubMed ID: 10074394 [TBL] [Abstract][Full Text] [Related]
12. Analytical reconstruction of the neuronal input current from spike train data. Awiszus F Biol Cybern; 1992; 66(6):537-42. PubMed ID: 1586678 [TBL] [Abstract][Full Text] [Related]
13. The frequency response function and sinusoidal threshold properties of the Hodgkin-Huxley model of action potential encoding. French AS Biol Cybern; 1984; 49(3):169-74. PubMed ID: 6704440 [TBL] [Abstract][Full Text] [Related]
14. Effect of autaptic activity on the response of a Hodgkin-Huxley neuron. Wang H; Wang L; Chen Y; Chen Y Chaos; 2014 Sep; 24(3):033122. PubMed ID: 25273202 [TBL] [Abstract][Full Text] [Related]
15. How adaptation currents change threshold, gain, and variability of neuronal spiking. Ladenbauer J; Augustin M; Obermayer K J Neurophysiol; 2014 Mar; 111(5):939-53. PubMed ID: 24174646 [TBL] [Abstract][Full Text] [Related]
16. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Jolivet R; Gerstner W J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972 [TBL] [Abstract][Full Text] [Related]
17. A Tantalum Disulfide Charge-Density-Wave Stochastic Artificial Neuron for Emulating Neural Statistical Properties. Liu H; Wu T; Yan X; Wu J; Wang N; Du Z; Yang H; Chen B; Zhang Z; Liu F; Wu W; Guo J; Wang H Nano Lett; 2021 Apr; 21(8):3465-3472. PubMed ID: 33835802 [TBL] [Abstract][Full Text] [Related]
18. Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels. Ozer M; Uzuntarla M; Perc M; Graham LJ J Theor Biol; 2009 Nov; 261(1):83-92. PubMed ID: 19615381 [TBL] [Abstract][Full Text] [Related]
19. Response of Morris-Lecar neurons to various stimuli. Wang H; Wang L; Yu L; Chen Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021915. PubMed ID: 21405871 [TBL] [Abstract][Full Text] [Related]
20. The stochastic diffusion models of nerve membrane depolarization and interspike interval generation. Lánský P; Sato S J Peripher Nerv Syst; 1999; 4(1):27-42. PubMed ID: 10197063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]