These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26507481)

  • 1. Dehydrogenation of Formic Acid by Heterogeneous Catalysts.
    Li J; Zhu QL; Xu Q
    Chimia (Aarau); 2015; 69(6):348-52. PubMed ID: 26507481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid.
    Onishi N; Kanega R; Kawanami H; Himeda Y
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.
    Mellmann D; Sponholz P; Junge H; Beller M
    Chem Soc Rev; 2016 Jul; 45(14):3954-88. PubMed ID: 27119123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid.
    Yurderi M; Bulut A; Caner N; Celebi M; Kaya M; Zahmakiran M
    Chem Commun (Camb); 2015 Jul; 51(57):11417-20. PubMed ID: 26087033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picolinamide-Based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide N Substituent on Activity and Stability.
    Kanega R; Onishi N; Wang L; Murata K; Muckerman JT; Fujita E; Himeda Y
    Chemistry; 2018 Dec; 24(69):18389-18392. PubMed ID: 29493841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base-Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts.
    Wang S; Huang H; Roisnel T; Bruneau C; Fischmeister C
    ChemSusChem; 2019 Jan; 12(1):179-184. PubMed ID: 30325585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir
    Wang WH; Wang H; Yang Y; Lai X; Li Y; Wang J; Himeda Y; Bao M
    ChemSusChem; 2020 Sep; 13(18):5015-5022. PubMed ID: 32662920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst.
    Cai YY; Li XH; Zhang YN; Wei X; Wang KX; Chen JS
    Angew Chem Int Ed Engl; 2013 Nov; 52(45):11822-5. PubMed ID: 24573724
    [No Abstract]   [Full Text] [Related]  

  • 13. Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid.
    Zhou W; Wei Z; Spannenberg A; Jiao H; Junge K; Junge H; Beller M
    Chemistry; 2019 Jun; 25(36):8459-8464. PubMed ID: 30938464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
    Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S
    J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pd-CNT-SiO
    Sousa-Castillo A; Li F; Carbó-Argibay E; Correa-Duarte MA; Klinkova A
    Chem Commun (Camb); 2019 Sep; 55(72):10733-10736. PubMed ID: 31432063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic acid dehydrogenation on au-based catalysts at near-ambient temperatures.
    Ojeda M; Iglesia E
    Angew Chem Int Ed Engl; 2009; 48(26):4800-3. PubMed ID: 19479912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of reactive Pd catalysts for an electrooxidation of formic acid.
    Jeon H; Uhm S; Jeong B; Lee J
    Phys Chem Chem Phys; 2011 Apr; 13(13):6192-6. PubMed ID: 21359275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.