BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26508279)

  • 1. Electronic transport properties of Ir-decorated graphene.
    Wang Y; Xiao S; Cai X; Bao W; Reutt-Robey J; Fuhrer MS
    Sci Rep; 2015 Oct; 5():15764. PubMed ID: 26508279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of bonding and electronic properties of graphene and benzene with iridium adatoms.
    Lazar P; Granatier J; Klimeš J; Hobza P; Otyepka M
    Phys Chem Chem Phys; 2014 Oct; 16(38):20818-27. PubMed ID: 25166887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-orbit coupling prevents spin channel suppression of transition metal atoms on armchair graphene nanoribbons.
    Rojas WY; Villegas CEP; Rocha AR
    Phys Chem Chem Phys; 2018 Dec; 20(47):29826-29832. PubMed ID: 30467570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of graphene with Au
    Murugesan R; Meng R; de Volder A; Keijers W; Janssens E; van de Vondel J; Afanasiev V; Houssa M
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35856847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.
    Błoński P; Hafner J
    J Phys Condens Matter; 2014 Apr; 26(14):146002. PubMed ID: 24651700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decorating graphene with size-selected few-atom clusters: a novel approach to investigate graphene-adparticle interactions.
    Scheerder JE; Picot T; Reckinger N; Sneyder T; Zharinov VS; Colomer JF; Janssens E; Van de Vondel J
    Nanoscale; 2017 Jul; 9(29):10494-10501. PubMed ID: 28703819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Hydrogen Adsorption on the Simultaneously Decorated Graphene Sheet with Titanium and Palladium Atoms.
    Tavakkoli Heravi MJ; Farhadian N
    Langmuir; 2024 Jun; ():. PubMed ID: 38922333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for superconductivity in Li-decorated monolayer graphene.
    Ludbrook BM; Levy G; Nigge P; Zonno M; Schneider M; Dvorak DJ; Veenstra CN; Zhdanovich S; Wong D; Dosanjh P; Straßer C; Stöhr A; Forti S; Ast CR; Starke U; Damascelli A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11795-9. PubMed ID: 26351697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.
    Papagno M; Rusponi S; Sheverdyaeva PM; Vlaic S; Etzkorn M; Pacilé D; Moras P; Carbone C; Brune H
    ACS Nano; 2012 Jan; 6(1):199-204. PubMed ID: 22136502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic spin transport and spin precession in single graphene layers at room temperature.
    Tombros N; Jozsa C; Popinciuc M; Jonkman HT; van Wees BJ
    Nature; 2007 Aug; 448(7153):571-4. PubMed ID: 17632544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms.
    Zhang H; Lazo C; Blügel S; Heinze S; Mokrousov Y
    Phys Rev Lett; 2012 Feb; 108(5):056802. PubMed ID: 22400951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of electric transport in few-layer graphene under large charge doping induced by electrochemical gating.
    Gonnelli RS; Paolucci F; Piatti E; Sharda K; Sola A; Tortello M; Nair JR; Gerbaldi C; Bruna M; Borini S
    Sci Rep; 2015 Apr; 5():9554. PubMed ID: 25906088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximity Effect Induced Electronic Properties of Graphene on Bi₂Te₂Se.
    Lee P; Jin KH; Sung SJ; Kim JG; Ryu MT; Park HM; Jhi SH; Kim N; Kim Y; Yu SU; Kim KS; Noh do Y; Chung J
    ACS Nano; 2015 Nov; 9(11):10861-6. PubMed ID: 26549323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms.
    Sung SJ; Yang JW; Lee PR; Kim JG; Ryu MT; Park HM; Lee G; Hwang CC; Kim KS; Kim JS; Chung JW
    Nanoscale; 2014 Apr; 6(7):3824-9. PubMed ID: 24584481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-ordering cascade with spin-orbit Mott dimer states in metallic iridium ditelluride.
    Ko KT; Lee HH; Kim DH; Yang JJ; Cheong SW; Eom MJ; Kim JS; Gammag R; Kim KS; Kim HS; Kim TH; Yeom HW; Koo TY; Kim HD; Park JH
    Nat Commun; 2015 Jun; 6():7342. PubMed ID: 26059464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong charge-transfer doping of 1 to 10 layer graphene by NO₂.
    Crowther AC; Ghassaei A; Jung N; Brus LE
    ACS Nano; 2012 Feb; 6(2):1865-75. PubMed ID: 22276666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic transport properties of graphene doped by gallium.
    Mach J; Procházka P; Bartošík M; Nezval D; Piastek J; Hulva J; Švarc V; Konečný M; Kormoš L; Šikola T
    Nanotechnology; 2017 Oct; 28(41):415203. PubMed ID: 28813368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfaces.
    Natterer FD; Rusponi S; Papagno M; Carbone C; Brune H
    J Phys Condens Matter; 2012 Aug; 24(31):314203. PubMed ID: 22820450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Microwave Measurements of an Intrinsic Spin-Orbit Coupling Gap in Graphene: A Possible Indication of a Topological State.
    Sichau J; Prada M; Anlauf T; Lyon TJ; Bosnjak B; Tiemann L; Blick RH
    Phys Rev Lett; 2019 Feb; 122(4):046403. PubMed ID: 30768326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.