BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26508489)

  • 1. Chemical Aspects of Nanoparticle Ecotoxicology.
    Sigg L; Behra R; Groh K; Isaacson C; Odzak N; Piccapietra F; Röhder L; Schug H; Yue Y; Schirmer K
    Chimia (Aarau); 2014 Nov; 68(11):806-11. PubMed ID: 26508489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.
    Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2014 Jul; 152():121-30. PubMed ID: 24747084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison.
    Yue Y; Li X; Sigg L; Suter MJ; Pillai S; Behra R; Schirmer K
    J Nanobiotechnology; 2017 Feb; 15(1):16. PubMed ID: 28245850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxicity of CeO
    Sendra M; Volland M; Balbi T; Fabbri R; Yeste MP; Gatica JM; Canesi L; Blasco J
    Aquat Toxicol; 2018 Jul; 200():13-20. PubMed ID: 29704629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural effects on marine amphipods exposed to silver ions and silver nanoparticles.
    Vannuci-Silva M; Kohler S; Umbuzeiro GA; Ford AT
    Environ Pollut; 2019 Sep; 252(Pt B):1051-1058. PubMed ID: 31252102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms.
    Rodea-Palomares I; Boltes K; Fernández-Piñas F; Leganés F; García-Calvo E; Santiago J; Rosal R
    Toxicol Sci; 2011 Jan; 119(1):135-45. PubMed ID: 20929986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and effects of cerium(III) and cerium oxide nanoparticles to Chlamydomonas reinhardtii.
    Kosak Née Röhder LA; Brandt T; Sigg L; Behra R
    Aquat Toxicol; 2018 Apr; 197():41-46. PubMed ID: 29433081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies.
    Hartmann NB; Engelbrekt C; Zhang J; Ulstrup J; Kusk KO; Baun A
    Nanotoxicology; 2013 Sep; 7(6):1082-94. PubMed ID: 22769854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats.
    Mukherjee K; Acharya K
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):175-186. PubMed ID: 29549419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species.
    Zhang W; Pu Z; Du S; Chen Y; Jiang L
    Environ Pollut; 2016 May; 212():584-591. PubMed ID: 26986089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview.
    Minetto D; Libralato G; Volpi Ghirardini A
    Environ Int; 2014 May; 66():18-27. PubMed ID: 24509165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.
    Thwala M; Klaine SJ; Musee N
    Environ Toxicol Chem; 2016 Jul; 35(7):1677-94. PubMed ID: 26757140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm.
    Cross RK; Tyler CR; Galloway TS
    Nanotoxicology; 2019 Sep; 13(7):894-908. PubMed ID: 31106667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of silver nanoparticle toxicity for common carp (Cyprinus carpio) fish embryos using a novel method controlling the agglomeration in the aquatic media.
    Oprsal J; Blaha L; Pouzar M; Knotek P; Vlcek M; Hrda K
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19124-32. PubMed ID: 26233755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes.
    Marisa I; Marin MG; Caicci F; Franceschinis E; Martucci A; Matozzo V
    Mar Environ Res; 2015 Feb; 103():11-7. PubMed ID: 25460057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems.
    Kwak JI; Cui R; Nam SH; Kim SW; Chae Y; An YJ
    Nanotoxicology; 2016; 10(5):521-30. PubMed ID: 26634622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.
    McGillicuddy E; Murray I; Kavanagh S; Morrison L; Fogarty A; Cormican M; Dockery P; Prendergast M; Rowan N; Morris D
    Sci Total Environ; 2017 Jan; 575():231-246. PubMed ID: 27744152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina.
    Sugantharaj David EMD; Madurantakam Royam M; Rajamani Sekar SK; Manivannan B; Jalaja Soman S; Mukherjee A; Natarajan C
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24187-24200. PubMed ID: 28887611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.