These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26509188)
1. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification. Sharma RR; Marikkannu P ScientificWorldJournal; 2015; 2015():184350. PubMed ID: 26509188 [TBL] [Abstract][Full Text] [Related]
2. A novel method and software for automatically classifying Alzheimer's disease patients by magnetic resonance imaging analysis. Previtali F; Bertolazzi P; Felici G; Weitschek E Comput Methods Programs Biomed; 2017 May; 143():89-95. PubMed ID: 28391822 [TBL] [Abstract][Full Text] [Related]
3. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Larroza A; Moratal D; Paredes-Sánchez A; Soria-Olivas E; Chust ML; Arribas LA; Arana E J Magn Reson Imaging; 2015 Nov; 42(5):1362-8. PubMed ID: 25865833 [TBL] [Abstract][Full Text] [Related]
4. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557 [TBL] [Abstract][Full Text] [Related]
5. An Efficient Method for Brain Tumor Detection Using Texture Features and SVM Classifier in MR Images. K KK; T MD; S M Asian Pac J Cancer Prev; 2018 Oct; 19(10):2789-2794. PubMed ID: 30360607 [TBL] [Abstract][Full Text] [Related]
6. Hybrid gray wolf optimizer-artificial neural network classification approach for magnetic resonance brain images. Ahmed HM; Youssef BAB; Elkorany AS; Saleeb AA; Abd El-Samie F Appl Opt; 2018 Mar; 57(7):B25-B31. PubMed ID: 29522032 [TBL] [Abstract][Full Text] [Related]
7. Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Milenković J; Hertl K; Košir A; Zibert J; Tasič JF Artif Intell Med; 2013 Jun; 58(2):101-14. PubMed ID: 23548472 [TBL] [Abstract][Full Text] [Related]
8. A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks. Kutlu H; Avcı E Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035406 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours. Way TW; Hadjiiski LM; Sahiner B; Chan HP; Cascade PN; Kazerooni EA; Bogot N; Zhou C Med Phys; 2006 Jul; 33(7):2323-37. PubMed ID: 16898434 [TBL] [Abstract][Full Text] [Related]
10. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease. Beheshti I; Demirel H; Comput Biol Med; 2015 Sep; 64():208-16. PubMed ID: 26226415 [TBL] [Abstract][Full Text] [Related]
11. Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images. Arimura H; Yoshiura T; Kumazawa S; Tanaka K; Koga H; Mihara F; Honda H; Sakai S; Toyofuku F; Higashida Y Acad Radiol; 2008 Mar; 15(3):274-84. PubMed ID: 18280925 [TBL] [Abstract][Full Text] [Related]
12. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Ranjith G; Parvathy R; Vikas V; Chandrasekharan K; Nair S Neuroradiol J; 2015 Apr; 28(2):106-11. PubMed ID: 25923676 [TBL] [Abstract][Full Text] [Related]
14. Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Kotu LP; Engan K; Borhani R; Katsaggelos AK; Ørn S; Woie L; Eftestøl T Artif Intell Med; 2015 Jul; 64(3):205-15. PubMed ID: 26239472 [TBL] [Abstract][Full Text] [Related]
15. Detection of Aβ plaque deposition in MR images based on pixel feature selection and class information in image level. Li Y; Zhu X; Wang P; Wang J; Liu S; Li F; Qiu M Biomed Eng Online; 2016 Sep; 15():108. PubMed ID: 27632977 [TBL] [Abstract][Full Text] [Related]
16. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Acharya UR; Vinitha Sree S; Krishnan MM; Molinari F; Garberoglio R; Suri JS Ultrasonics; 2012 Apr; 52(4):508-20. PubMed ID: 22154208 [TBL] [Abstract][Full Text] [Related]
17. A Clinical Support System for Brain Tumor Classification Using Soft Computing Techniques. Arasi PRE; Suganthi M J Med Syst; 2019 Apr; 43(5):144. PubMed ID: 30989341 [TBL] [Abstract][Full Text] [Related]
18. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments. Chang Y; Paul AK; Kim N; Baek JH; Choi YJ; Ha EJ; Lee KD; Lee HS; Shin D; Kim N Med Phys; 2016 Jan; 43(1):554. PubMed ID: 26745948 [TBL] [Abstract][Full Text] [Related]
19. Fissures segmentation using surface features: content-based retrieval for mammographic mass using ensemble classifier. Liu H; Lan Y; Xu X; Song E; Hung CC Acad Radiol; 2011 Dec; 18(12):1475-84. PubMed ID: 22055794 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. Xu X; Zhang X; Tian Q; Zhang G; Liu Y; Cui G; Meng J; Wu Y; Liu T; Yang Z; Lu H Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):645-656. PubMed ID: 28110476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]