BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26509253)

  • 1. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy.
    Brands D; Klawonn A; Rheinbach O; Schröder J
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Lagrange methods for quasi-incompressible materials--applications to soft biological tissue.
    Brinkhues S; Klawonn A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2013 Mar; 29(3):332-50. PubMed ID: 23345136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.
    Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E
    Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of viscoelasticity on residual strain in aortic soft tissues.
    Zhang W; Sommer G; Niestrawska JA; Holzapfel GA; Nordsletten D
    Acta Biomater; 2022 Mar; 140():398-411. PubMed ID: 34823042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
    Wang X; Fullana JM; Lagrée PY
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1704-25. PubMed ID: 25145651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements.
    Avril S; Badel P; Duprey A
    J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries.
    Balzani D; Schröder J; Gross D
    Acta Biomater; 2006 Nov; 2(6):609-18. PubMed ID: 16945600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invariant-based anisotropic constitutive models of the healthy and aneurysmal abdominal aortic wall.
    Basciano CA; Kleinstreuer C
    J Biomech Eng; 2009 Feb; 131(2):021009. PubMed ID: 19102568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A polyconvex anisotropic strain-energy function for soft collagenous tissues.
    Itskov M; Ehret AE; Mavrilas D
    Biomech Model Mechanobiol; 2006 Mar; 5(1):17-26. PubMed ID: 16362195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021914. PubMed ID: 18850872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 1: A review of models for arterial wall behaviour.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):229-40. PubMed ID: 9769691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical implementation of viscoelastic blood flow in a simplified arterial geometry.
    Rojas HA
    Med Eng Phys; 2007 May; 29(4):491-6. PubMed ID: 16919988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modelling of fracture in human arteries.
    Ferrara A; Pandolfi A
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical behavior of the arterial wall and its numerical characterization.
    Holzapfel GA; Weizsäcker HW
    Comput Biol Med; 1998 Jul; 28(4):377-92. PubMed ID: 9805198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.