These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26509373)

  • 1. The Influence of Glove Type on Simulated Wheelchair Racing Propulsion: A Pilot Study.
    Rice I; Dysterheft J; Bleakney AW; Cooper RA
    Int J Sports Med; 2016 Jan; 37(1):30-5. PubMed ID: 26509373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic analysis of trained wheelchair racers during two speeds of propulsion.
    Goosey-Tolfrey VL; Fowler NE; Campbell IG; Iwnicki SD
    Med Eng Phys; 2001 May; 23(4):259-66. PubMed ID: 11427363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The short-term influence of rear wheel axle position and training on manual wheelchair propulsion technique in novice able-bodied participants during steady-state treadmill propulsion, a pilot study.
    Rice I; Jayaraman C; Pohlig RT
    Assist Technol; 2020 May; 32(3):136-143. PubMed ID: 30060708
    [No Abstract]   [Full Text] [Related]  

  • 4. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of holding a racket on propulsion technique of wheelchair tennis players.
    de Groot S; Bos F; Koopman J; Hoekstra AE; Vegter RJK
    Scand J Med Sci Sports; 2017 Sep; 27(9):918-924. PubMed ID: 27230534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic factors determining wheelchair propulsion in marathon racers with paraplegia.
    Okawa H; Tajima F; Makino K; Kawazu T; Mizushima T; Monji K; Ogata H
    Spinal Cord; 1999 Aug; 37(8):542-7. PubMed ID: 10455529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of a novel square-profile hand rim on propulsion technique of wheelchair tennis players.
    de Groot S; Bos F; Koopman J; Hoekstra AE; Vegter RJK
    Appl Ergon; 2018 Sep; 71():38-44. PubMed ID: 29764612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of glove type on mobility performance for wheelchair rugby players.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Am J Phys Med Rehabil; 2009 Jul; 88(7):559-70. PubMed ID: 19542780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of push frequency on the economy of wheelchair racers.
    Goosey VL; Campbell IG; Fowler NE
    Med Sci Sports Exerc; 2000 Jan; 32(1):174-81. PubMed ID: 10647546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Placement effects of inertial measurement units on contact identification in wheelchair racing.
    Lewis AR; Haydon DS; Phillips EJ; Grimshaw PN; Pinder RA; Winter J; Robertson WSP; Portus MR
    Sports Biomech; 2021 Feb; 20(1):55-70. PubMed ID: 30480477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint performance and propulsion asymmetries on an ergometer in trained high- and low-point wheelchair rugby players.
    Goosey-Tolfrey VL; Vegter RJK; Mason BS; Paulson TAW; Lenton JP; van der Scheer JW; van der Woude LHV
    Scand J Med Sci Sports; 2018 May; 28(5):1586-1593. PubMed ID: 29350429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of wheelchair user interface and personal characteristics on static and dynamic pretibial skin pressures in elite wheelchair racers, a pilot study.
    Rice I; Peters J; Rice L; Jan YK
    J Spinal Cord Med; 2019 Sep; 42(5):613-621. PubMed ID: 30129885
    [No Abstract]   [Full Text] [Related]  

  • 14. Case study on the effects of fit and material of sports gloves on hand performance.
    Yu A; Yick KL; Ng SP; Yip J
    Appl Ergon; 2019 Feb; 75():17-26. PubMed ID: 30509523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical comparison of two racing wheelchair propulsion techniques.
    Chow JW; Millikan TA; Carlton LG; Morse MI; Chae WS
    Med Sci Sports Exerc; 2001 Mar; 33(3):476-84. PubMed ID: 11252077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.
    Wang YT; Vrongistinos KD; Xu D
    J Appl Biomech; 2008 Aug; 24(3):280-7. PubMed ID: 18843158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair rugby players maintain sprint performance but alter propulsion biomechanics after simulated match play.
    Briley SJ; O'Brien TJ; Oh YT; Vegter RJK; Chan M; Mason BS; Goosey-Tolfrey VL
    Scand J Med Sci Sports; 2023 Sep; 33(9):1726-1737. PubMed ID: 37278319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary outcomes of the SmartWheel Users' Group database: a proposed framework for clinicians to objectively evaluate manual wheelchair propulsion.
    Cowan RE; Boninger ML; Sawatzky BJ; Mazoyer BD; Cooper RA
    Arch Phys Med Rehabil; 2008 Feb; 89(2):260-8. PubMed ID: 18226649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis.
    Rice IM; Rice LA; Motl RW
    Arch Phys Med Rehabil; 2015 Oct; 96(10):1850-8. PubMed ID: 26150167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.