These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26509373)

  • 21. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of wheel size on mobility performance in wheelchair athletes.
    Mason B; van der Woude L; Lenton JP; Goosey-Tolfrey V
    Int J Sports Med; 2012 Oct; 33(10):807-12. PubMed ID: 22592541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high sample rate, wireless instrumented wheel for measuring 3D pushrim kinetics of a racing wheelchair.
    Chénier F; Pelland-Leblanc JP; Parrinello A; Marquis E; Rancourt D
    Med Eng Phys; 2021 Jan; 87():30-37. PubMed ID: 33461671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces.
    Koontz AM; Cooper RA; Boninger ML; Yang Y; Impink BG; van der Woude LH
    J Rehabil Res Dev; 2005; 42(4):447-58. PubMed ID: 16320141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wheelchair racing sports science: a review.
    Cooper RA
    J Rehabil Res Dev; 1990; 27(3):295-312. PubMed ID: 2205719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of vertical reaction forces during propulsion of three different one-arm drive wheelchairs by hemiplegic users.
    Mandy A; Redhead L; McCudden C; Michaelis J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):242-7. PubMed ID: 23527873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby.
    Haydon DS; Pinder RA; Grimshaw PN; Robertson WSP
    Int J Sports Physiol Perform; 2018 Feb; 13(2):156-162. PubMed ID: 28530452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cluster analysis of novel isometric strength measures produces a valid and evidence-based classification structure for wheelchair track racing.
    Connick MJ; Beckman E; Vanlandewijck Y; Malone LA; Blomqvist S; Tweedy SM
    Br J Sports Med; 2018 Sep; 52(17):1123-1129. PubMed ID: 29175826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of caffeine and sodium citrate ingestion on 1,500-m exercise performance in elite wheelchair athletes: a pilot study.
    Flueck JL; Mettler S; Perret C
    Int J Sport Nutr Exerc Metab; 2014 Jun; 24(3):296-304. PubMed ID: 24281893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.
    Mason BS; van der Woude LH; Goosey-Tolfrey VL
    Sports Med; 2013 Jan; 43(1):23-38. PubMed ID: 23315754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of wheelchair handrim tube diameter on propulsion efficiency and force application (tube diameter and efficiency in wheelchairs).
    van der Linden ML; Valent L; Veeger HE; van der Woude LH
    IEEE Trans Rehabil Eng; 1996 Sep; 4(3):123-32. PubMed ID: 8800215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wheelchair racing efficiency.
    Cooper RA; Boninger ML; Cooper R; Robertson RN; Baldini FD
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):207-12. PubMed ID: 12623628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zeroing of six-component handrim dynamometer for biomechanical studies of manual wheelchair locomotion.
    Sauret C; Dabonneville M; Couétard Y; de Saint Rémy N; Kauffmann P; Cid M; Vaslin P
    Comput Methods Biomech Biomed Engin; 2014; 17(4):416-22. PubMed ID: 22616842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system.
    Chow JW; Millikan TA; Carlton LG; Chae W; Morse MI
    J Biomech; 2000 May; 33(5):601-8. PubMed ID: 10708781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute median nerve dysfunction from wheelchair propulsion: the development of a model and study of the effect of hand protection.
    Burnham R; Chan M; Hazlett C; Laskin J; Steadward R
    Arch Phys Med Rehabil; 1994 May; 75(5):513-8. PubMed ID: 8185442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.