These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26509373)

  • 41. Wheelchair Mobility Performance Enhancement by Changing Wheelchair Properties: What Is the Effect of Grip, Seat Height, and Mass?
    van der Slikke RMA; de Witte AMH; Berger MAM; Bregman DJJ; Veeger DJHEJ
    Int J Sports Physiol Perform; 2018 Sep; 13(8):1050-1058. PubMed ID: 29431595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aerobic power of competitive paraplegic road racers.
    Hooker SP; Wells CL
    Paraplegia; 1992 Jun; 30(6):428-36. PubMed ID: 1635793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expert Users' Perceptions of Racing Wheelchair Design and Setup: The Knowns, Unknowns, and Next Steps.
    Bundon A; Mason BS; Goosey-Tolfrey VL
    Adapt Phys Activ Q; 2017 Apr; 34(2):141-161. PubMed ID: 28556768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of backrest height on wheelchair propulsion biomechanics for level and uphill conditions.
    Yang YS; Koontz AM; Yeh SJ; Chang JJ
    Arch Phys Med Rehabil; 2012 Apr; 93(4):654-9. PubMed ID: 22325682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of varying level terrain on wheelchair propulsion biomechanics.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Am J Phys Med Rehabil; 2008 Dec; 87(12):984-91. PubMed ID: 18824889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A quantitative evaluation of gloves used with non-powered hand tools in routine maintenance tasks.
    Mital A; Kuo T; Faard HF
    Ergonomics; 1994 Feb; 37(2):333-43. PubMed ID: 8119264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Technical Note: A Novel Servo-Driven Dual-Roller Handrim Wheelchair Ergometer.
    de Klerk R; Vegter RJK; Veeger HEJ; van der Woude LHV
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):953-960. PubMed ID: 32070986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An instrumented wheel system for measuring 3-D pushrim kinetics during racing wheelchair propulsion.
    Limroongreungrat W; Wang YT; Chang LS; Geil MD; Johnson JT
    Res Sports Med; 2009; 17(3):182-94. PubMed ID: 19731178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback.
    Rice IM; Pohlig RT; Gallagher JD; Boninger ML
    Arch Phys Med Rehabil; 2013 Feb; 94(2):256-63. PubMed ID: 23022092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor.
    Nam KT; Jang DJ; Kim YC; Heo Y; Hong EP
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Paddling Force Profiles at Different Stroke Rates in Elite Sprint Kayaking.
    Gomes BB; Ramos NV; Conceição F AV; Sanders RH; Vaz MA; Vilas-Boas JP
    J Appl Biomech; 2015 Aug; 31(4):258-63. PubMed ID: 25838207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlation of heart rate at lactate minimum and maximal lactate steady state in wheelchair-racing athletes.
    Perret C; Labruyère R; Mueller G; Strupler M
    Spinal Cord; 2012 Jan; 50(1):33-6. PubMed ID: 21894166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An analytical model of the demand for propulsion torque during manual wheelchair propelling.
    Kukla M; Wieczorek B; Warguła Ł; Berdychowski M
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):9-16. PubMed ID: 31267792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pushrim biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury.
    Gagnon DH; Babineau AC; Champagne A; Desroches G; Aissaoui R
    J Rehabil Res Dev; 2014; 51(5):789-802. PubMed ID: 25357244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxygen uptake-heart rate relationship in élite wheelchair racers.
    Tolfrey K; Goosey-Tolfrey VL; Campbell IG
    Eur J Appl Physiol; 2001 Dec; 86(2):174-8. PubMed ID: 11822477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A practical assessment of wheelchair racing performance kinetics using accelerometers.
    Lewis AR; Phillips EJ; Robertson WSP; Grimshaw PN; Portus M; Winter J
    Sports Biomech; 2021 Dec; 20(8):1001-1014. PubMed ID: 31354108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acute responses of biomechanical parameters to different sizes of hand paddles in front-crawl stroke.
    Barbosa AC; Castro Fde S; Dopsaj M; Cunha SA; Andries O
    J Sports Sci; 2013; 31(9):1015-23. PubMed ID: 23360179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.