These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26509691)

  • 41. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ecology and evolution of non-domesticated Saccharomyces species.
    Boynton PJ; Greig D
    Yeast; 2014 Dec; 31(12):449-62. PubMed ID: 25242436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains.
    Treu L; Toniolo C; Nadai C; Sardu A; Giacomini A; Corich V; Campanaro S
    Environ Microbiol; 2014 May; 16(5):1378-97. PubMed ID: 24238297
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A short history of recombination in yeast.
    Zeyl CW; Otto SP
    Trends Ecol Evol; 2007 May; 22(5):223-5. PubMed ID: 17296245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contrasting Genomic Evolution Between Domesticated and Wild Kluyveromyces lactis Yeast Populations.
    Friedrich A; Gounot JS; Tsouris A; Bleykasten C; Freel K; Caradec C; Schacherer J
    Genome Biol Evol; 2023 Feb; 15(2):. PubMed ID: 36634937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations.
    Raas MWD; Dutheil JY
    Mol Ecol; 2024 May; 33(10):e16980. PubMed ID: 37157166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis.
    Curtin CD; Pretorius IS
    FEMS Yeast Res; 2014 Nov; 14(7):997-1005. PubMed ID: 25142832
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The fascinating and secret wild life of the budding yeast S. cerevisiae.
    Liti G
    Elife; 2015 Mar; 4():. PubMed ID: 25807086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Budding yeast as a model organism for population genetics.
    Zeyl C
    Yeast; 2000 Jun; 16(8):773-84. PubMed ID: 10861902
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contrasting evolutionary genome dynamics between domesticated and wild yeasts.
    Yue JX; Li J; Aigrain L; Hallin J; Persson K; Oliver K; Bergström A; Coupland P; Warringer J; Lagomarsino MC; Fischer G; Durbin R; Liti G
    Nat Genet; 2017 Jun; 49(6):913-924. PubMed ID: 28416820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins.
    Borneman AR; Desany BA; Riches D; Affourtit JP; Forgan AH; Pretorius IS; Egholm M; Chambers PJ
    FEMS Yeast Res; 2012 Feb; 12(1):88-96. PubMed ID: 22136070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast evolution and comparative genomics.
    Liti G; Louis EJ
    Annu Rev Microbiol; 2005; 59():135-53. PubMed ID: 15877535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Teosinte as a model system for population and ecological genomics.
    Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J
    Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.
    Donalies UE; Nguyen HT; Stahl U; Nevoigt E
    Adv Biochem Eng Biotechnol; 2008; 111():67-98. PubMed ID: 18463806
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking.
    Renouf V; Falcou M; Miot-Sertier C; Perello MC; De Revel G; Lonvaud-Funel A
    J Appl Microbiol; 2006 Jun; 100(6):1208-19. PubMed ID: 16696668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins.
    Salinas F; Mandaković D; Urzua U; Massera A; Miras S; Combina M; Ganga MA; Martínez C
    J Appl Microbiol; 2010 May; 108(5):1850-8. PubMed ID: 20163487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity.
    Wang QM; Liu WQ; Liti G; Wang SA; Bai FY
    Mol Ecol; 2012 Nov; 21(22):5404-17. PubMed ID: 22913817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A systems biology perspective of wine fermentations.
    Pizarro F; Vargas FA; Agosin E
    Yeast; 2007 Nov; 24(11):977-91. PubMed ID: 17899563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.