These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26509737)

  • 1. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron-Na vacancy complex diffusion.
    Bui KM; Dinh VA; Okada S; Ohno T
    Phys Chem Chem Phys; 2015 Nov; 17(45):30433-9. PubMed ID: 26509737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Functional Study on Small Polaron Formation and Ion Diffusion in the Cathode Material Na
    Tran TL; Luong HD; Duong DM; Dinh NT; Dinh VA
    ACS Omega; 2020 Mar; 5(10):5429-5435. PubMed ID: 32201834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the diffusion mechanism of sodium ion-polaron complexes in orthorhombic P2 layered cathode oxide Na
    Luong HD; Dinh VA; Momida H; Oguchi T
    Phys Chem Chem Phys; 2020 Aug; 22(32):18219-18228. PubMed ID: 32776034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion mechanism of Na ion-polaron complex in potential cathode materials NaVOPO
    Luong HD; Pham TD; Morikawa Y; Shibutani Y; Dinh VA
    Phys Chem Chem Phys; 2018 Sep; 20(36):23625-23634. PubMed ID: 30191242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries.
    Song W; Ji X; Chen J; Wu Z; Zhu Y; Ye K; Hou H; Jing M; Banks CE
    Phys Chem Chem Phys; 2015 Jan; 17(1):159-65. PubMed ID: 25372713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study into the extracted ion number for NASICON structured Na₃V₂(PO₄)₃ in sodium-ion batteries.
    Song W; Cao X; Wu Z; Chen J; Huangfu K; Wang X; Huang Y; Ji X
    Phys Chem Chem Phys; 2014 Sep; 16(33):17681-7. PubMed ID: 25028981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries.
    Song W; Ji X; Pan C; Zhu Y; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(34):14357-63. PubMed ID: 23877439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2(110) surface by GGA + U and HSE06 methods.
    Shibuya T; Yasuoka K; Mirbt S; Sanyal B
    J Phys Condens Matter; 2012 Oct; 24(43):435504. PubMed ID: 23032600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Crystallographic Sites on Sodium-Ion Extraction from NASICON-Structured Cathodes for Sodium-Ion Batteries.
    Wang Q; Gao H; Li J; Liu GB; Jin H
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14312-14320. PubMed ID: 33749228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study.
    Bui KM; Dinh VA; Okada S; Ohno T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27226-27231. PubMed ID: 27711555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries.
    Song W; Ji X; Yao Y; Zhu H; Chen Q; Sun Q; Banks CE
    Phys Chem Chem Phys; 2014 Feb; 16(7):3055-61. PubMed ID: 24394660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs.
    Arroyo-de Dompablo ME; Morales-García A; Taravillo M
    J Chem Phys; 2011 Aug; 135(5):054503. PubMed ID: 21823708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Chemistry and Ionic Conductivity of the NASICON-Related Phases in the Li
    Semykina DO; Podgornova OA; Moodakare SB; Vedarajan R; Kosova NV
    Inorg Chem; 2023 Apr; 62(15):5939-5950. PubMed ID: 37001145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties.
    Kajiyama S; Kikkawa J; Hoshino J; Okubo M; Hosono E
    Chemistry; 2014 Sep; 20(39):12636-40. PubMed ID: 25123497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111).
    Ganduglia-Pirovano MV; Da Silva JL; Sauer J
    Phys Rev Lett; 2009 Jan; 102(2):026101. PubMed ID: 19257295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo
    Juran TR; Smeu M
    Phys Chem Chem Phys; 2017 Aug; 19(31):20684-20690. PubMed ID: 28737809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of the sodium patterning in Na(x)CoO(2) (0.5 < or = x < or = 1) by density functional theory methods.
    Meng YS; Hinuma Y; Ceder G
    J Chem Phys; 2008 Mar; 128(10):104708. PubMed ID: 18345920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06.
    Krcha MD; Janik MJ
    Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Nanoscale; 2014 May; 6(10):5081-6. PubMed ID: 24595960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the sodium ion pathway and cathode behavior in Na₃V₂(PO₄)₂F₃ combined via a first principles calculation.
    Song W; Cao X; Wu Z; Chen J; Zhu Y; Hou H; Lan Q; Ji X
    Langmuir; 2014 Oct; 30(41):12438-46. PubMed ID: 25212063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.