These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 26509788)
1. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation. Ali F; Wharton DA PLoS One; 2015; 10(10):e0141810. PubMed ID: 26509788 [TBL] [Abstract][Full Text] [Related]
2. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. Jagdale GB; Grewal PS Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652 [TBL] [Abstract][Full Text] [Related]
3. Intracellular freezing in the infective juveniles of Steinernema feltiae: an entomopathogenic nematode. Ali F; Wharton DA PLoS One; 2014; 9(4):e94179. PubMed ID: 24769523 [TBL] [Abstract][Full Text] [Related]
4. Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Ali F; Wharton DA Cryobiology; 2013 Feb; 66(1):24-9. PubMed ID: 23142823 [TBL] [Abstract][Full Text] [Related]
5. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect. Toxopeus J; Koštál V; Sinclair BJ Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098 [TBL] [Abstract][Full Text] [Related]
6. Ice-Active Substances from the Infective Juveniles of the Freeze Tolerant Entomopathogenic Nematode, Steinernema feltiae. Ali F; Wharton DA PLoS One; 2016; 11(5):e0156502. PubMed ID: 27227961 [TBL] [Abstract][Full Text] [Related]
7. Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi. Wharton DA; Judge KF; Worland MR J Comp Physiol B; 2000 Jun; 170(4):321-7. PubMed ID: 10935523 [TBL] [Abstract][Full Text] [Related]
8. The cryoprotectant system of Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation, freezing, and thawing. do Amaral MCF; Frisbie J; Goldstein DL; Krane CM J Comp Physiol B; 2018 Jul; 188(4):611-621. PubMed ID: 29550887 [TBL] [Abstract][Full Text] [Related]
9. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Wharton DA; Downes MF; Goodall G; Marshall CJ Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366 [TBL] [Abstract][Full Text] [Related]
10. Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. Wharton DA; Goodall G; Marshall CJ J Exp Biol; 2003 Jan; 206(Pt 2):215-21. PubMed ID: 12477892 [TBL] [Abstract][Full Text] [Related]
11. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration. Hayashi M; Wharton DA J Comp Physiol B; 2011 Apr; 181(3):335-42. PubMed ID: 21153645 [TBL] [Abstract][Full Text] [Related]
12. Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration. Layne JR; Jones AL J Exp Zool; 2001 Jun; 290(1):1-5. PubMed ID: 11429758 [TBL] [Abstract][Full Text] [Related]
13. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
14. Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species. Smith T; Wharton DA; Marshall CJ J Comp Physiol B; 2008 Jan; 178(1):93-100. PubMed ID: 17712562 [TBL] [Abstract][Full Text] [Related]
15. Content of glycogen and trehalose and activity of alpha-amylase and trehalase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Lopieńiska-Biernat E Wiad Parazytol; 2006; 52(2):103-7. PubMed ID: 17120991 [TBL] [Abstract][Full Text] [Related]
16. Molecular snapshot of an intracellular freezing event in an Antarctic nematode. Thorne MAS; Seybold A; Marshall C; Wharton D Cryobiology; 2017 Apr; 75():117-124. PubMed ID: 28082102 [TBL] [Abstract][Full Text] [Related]
17. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Seybold AC; Wharton DA; Thorne MAS; Marshall CJ Biol Open; 2017 Dec; 6(12):1953-1959. PubMed ID: 29175859 [No Abstract] [Full Text] [Related]
18. RELATIONSHIP BETWEEN SUPERCOOLING CAPABILITY AND CRYOPROTECTANT CONTENT IN EGGS OF PARARCYPTERA MICROPTERA MERIDIONALIS (ORTHOPTERA: ACRYPTERIDAE). Zhou XR; Li YY; Li N; Pang BP Cryo Letters; 2015; 36(4):270-7. PubMed ID: 26576002 [TBL] [Abstract][Full Text] [Related]
19. Overwintering of the boreal butterfly Colias palaeno in central Europe. Vrba P; Dolek M; Nedved O; Zahradnickova H; Cerrato C; Konvicka M Cryo Letters; 2014; 35(3):247-54. PubMed ID: 24997843 [TBL] [Abstract][Full Text] [Related]
20. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]