These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26510213)

  • 1. Nanostructuring graphene by dense electronic excitation.
    Ochedowski O; Lehtinen O; Kaiser U; Turchanin A; Ban-d'Etat B; Lebius H; Karlušić M; Jakšić M; M Schleberger
    Nanotechnology; 2015 Nov; 26(46):465302. PubMed ID: 26510213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled formation of closed-edge nanopores in graphene.
    He K; Robertson AW; Gong C; Allen CS; Xu Q; Zandbergen H; Grossman JC; Kirkland AI; Warner JH
    Nanoscale; 2015 Jul; 7(27):11602-10. PubMed ID: 26088477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of long and short DNA using nanopores with graphitic polyhedral edges.
    Freedman KJ; Ahn CW; Kim MJ
    ACS Nano; 2013 Jun; 7(6):5008-16. PubMed ID: 23713602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of Bilayer and Trilayer Graphene to High-Energy Heavy Ion Irradiation.
    Iveković D; Kumar S; Gajović A; Čižmar T; Karlušić M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring electron-beam irradiation effects on graphenes by temporal Auger electron spectroscopy.
    Xu M; Fujita D; Hanagata N
    Nanotechnology; 2010 Jul; 21(26):265705. PubMed ID: 20534894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helium ion microscopy of graphene: beam damage, image quality and edge contrast.
    Fox D; Zhou YB; O'Neill A; Kumar S; Wang JJ; Coleman JN; Duesberg GS; Donegan JF; Zhang HZ
    Nanotechnology; 2013 Aug; 24(33):335702. PubMed ID: 23883614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Nanoribbons with Atomically Sharp Edges Produced by AFM Induced Self-Folding.
    Chang JS; Kim S; Sung HJ; Yeon J; Chang KJ; Li X; Kim S
    Small; 2018 Nov; 14(47):e1803386. PubMed ID: 30307700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry of folded graphene edges.
    Ambrosi A; Bonanni A; Pumera M
    Nanoscale; 2011 May; 3(5):2256-60. PubMed ID: 21483940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification.
    Temmen M; Ochedowski O; Bussmann BK; Schleberger M; Reichling M; Bollmann TR
    Beilstein J Nanotechnol; 2013; 4():625-31. PubMed ID: 24205456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).
    Cong C; Yu T; Saito R; Dresselhaus GF; Dresselhaus MS
    ACS Nano; 2011 Mar; 5(3):1600-5. PubMed ID: 21344883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
    Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F
    ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene engineering by neon ion beams.
    Iberi V; Ievlev AV; Vlassiouk I; Jesse S; Kalinin SV; Joy DC; Rondinone AJ; Belianinov A; Ovchinnikova OS
    Nanotechnology; 2016 Mar; 27(12):125302. PubMed ID: 26890062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy.
    Warner JH
    Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of edge geometry and chemistry in the electronic properties of graphene nanostructures.
    Fujii S; Ziatdinov M; Ohtsuka M; Kusakabe K; Kiguchi M; Enoki T
    Faraday Discuss; 2014; 173():173-99. PubMed ID: 25466581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy.
    Xu YN; Zhan D; Liu L; Suo H; Ni ZH; Nguyen TT; Zhao C; Shen ZX
    ACS Nano; 2011 Jan; 5(1):147-52. PubMed ID: 21171568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes.
    Verschueren DV; Yang W; Dekker C
    Nanotechnology; 2018 Apr; 29(14):145302. PubMed ID: 29384130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.
    Li Z; Liu Y; Zhao Y; Zhang X; Qian L; Tian L; Bai J; Qi W; Yao H; Gao B; Liu J; Wu W; Qiu H
    Anal Chem; 2016 Oct; 88(20):10002-10010. PubMed ID: 27618293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.