BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26510527)

  • 1. Model-assisted formate dehydrogenase-O (fdoH) gene knockout for enhanced succinate production in Escherichia coli from glucose and glycerol carbon sources.
    Mienda BS; Shamsir MS; Md Illias R
    J Biomol Struct Dyn; 2016 Nov; 34(11):2305-16. PubMed ID: 26510527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.
    Mienda BS; Shamsir MS; Illias RM
    Comput Biol Chem; 2016 Apr; 61():130-7. PubMed ID: 26878126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid production from glycerol.
    Mienda BS; Shamsir MS; Md Illias R
    J Biomol Struct Dyn; 2016 Aug; 34(8):1705-16. PubMed ID: 26513379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico deletion of PtsG gene in Escherichia coli genome-scale model predicts increased succinate production from glycerol.
    Mienda BS; Shamsir MS
    J Biomol Struct Dyn; 2015; 33(11):2380-9. PubMed ID: 25921851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.
    Sánchez AM; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111].
    Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.
    Li Q; Huang B; Wu H; Li Z; Ye Q
    Bioresour Technol; 2017 May; 231():75-84. PubMed ID: 28196782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli.
    Yu Y; Zhu X; Xu H; Zhang X
    Metab Eng; 2019 Dec; 56():181-189. PubMed ID: 31600571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
    Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R
    Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains.
    Wang J; Zhu J; Bennett GN; San KY
    Metab Eng; 2011 May; 13(3):328-35. PubMed ID: 21440082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol.
    Tran KT; Maeda T; Wood TK
    Appl Microbiol Biotechnol; 2014 May; 98(10):4757-70. PubMed ID: 24615384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.