BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26510527)

  • 21. Long-term adaptation of Escherichia coli to methanogenic co-culture enhanced succinate production from crude glycerol.
    Kim NY; Kim SN; Kim OB
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):71-76. PubMed ID: 29230577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased incorporation of gaseous CO
    Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J
    J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol.
    Li N; Zhang B; Chen T; Wang Z; Tang YJ; Zhao X
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1461-75. PubMed ID: 24085686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Escherichia coli for the production of succinate from glycerol.
    Blankschien MD; Clomburg JM; Gonzalez R
    Metab Eng; 2010 Sep; 12(5):409-19. PubMed ID: 20601068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elementary mode analysis for the rational design of efficient succinate conversion from glycerol by Escherichia coli.
    Chen Z; Liu H; Zhang J; Liu D
    J Biomed Biotechnol; 2010; 2010():518743. PubMed ID: 20886007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation.
    Kim NY; Lee YJ; Park JW; Kim SN; Kim EY; Kim Y; Kim OB
    mSphere; 2021 Oct; 6(5):e0065421. PubMed ID: 34494882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Construction of engineered Escherichia coli for aerobic succinate production].
    Kang Z; Geng Y; Zhang Y; Qi Q
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2081-5. PubMed ID: 19306579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Brocker M; Bott M
    Microb Biotechnol; 2013 Mar; 6(2):189-95. PubMed ID: 22513227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations.
    Godoy MS; Nikel PI; Cabrera Gomez JG; Pettinari MJ
    Appl Environ Microbiol; 2016 Jan; 82(1):244-54. PubMed ID: 26497466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol.
    Balagurunathan B; Jain VK; Tear CJ; Lim CY; Zhao H
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):361-372. PubMed ID: 27796571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
    Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli.
    Kang Z; Du L; Kang J; Wang Y; Wang Q; Liang Q; Qi Q
    Bioresour Technol; 2011 Jun; 102(11):6600-4. PubMed ID: 21489786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.
    Fukui K; Nanatani K; Hara Y; Yamakami S; Yahagi D; Chinen A; Tokura M; Abe K
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1837-1844. PubMed ID: 28673128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli.
    Iwadate Y; Funabasama N; Kato JI
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 29044403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of overexpression of nicotinic acid phosphoribosyl transferase on succinic acid production in Escherichia coli NZN111].
    Liu R; Ma J; Liang L; Xu B; Wang G; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1438-47. PubMed ID: 22260060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruiting alternative glucose utilization pathways for improving succinate production.
    Tang J; Zhu X; Lu J; Liu P; Xu H; Tan Z; Zhang X
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2513-20. PubMed ID: 22895848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase.
    Liang LY; Liu RM; Ma JF; Chen KQ; Jiang M; Wei P
    Biotechnol Lett; 2011 Dec; 33(12):2439-44. PubMed ID: 21792684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions.
    Zhu F; Wang Y; San KY; Bennett GN
    Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.