These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26510714)

  • 1. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration.
    Mattioli-Belmonte M; De Maria C; Vitale-Brovarone C; Baino F; Dicarlo M; Vozzi G
    J Tissue Eng Regen Med; 2017 Jul; 11(7):1986-1997. PubMed ID: 26510714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive glass/polymer composite scaffolds mimicking bone tissue.
    Gentile P; Mattioli-Belmonte M; Chiono V; Ferretti C; Baino F; Tonda-Turo C; Vitale-Brovarone C; Pashkuleva I; Reis RL; Ciardelli G
    J Biomed Mater Res A; 2012 Oct; 100(10):2654-67. PubMed ID: 22615261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic bone formation by gel-derived bioactive glass-poly-L-lactide-co-glycolide composites in a rabbit muscle model.
    Filipowska J; Cholewa-Kowalska K; Wieczorek J; Semik D; Dąbrowski Z; Łączka M; Osyczka AM
    Biomed Mater; 2017 Jan; 12(1):015015. PubMed ID: 28094240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.
    Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J
    Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds.
    Cui N; Qian J; Wang J; Ji C; Xu W; Wang H
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():118-124. PubMed ID: 27987675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth.
    Kunwong N; Tangjit N; Rattanapinyopituk K; Dechkunakorn S; Anuwongnukroh N; Arayapisit T; Sritanaudomchai H
    Arch Oral Biol; 2021 Mar; 123():105041. PubMed ID: 33454420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.
    Mikael PE; Amini AR; Basu J; Josefina Arellano-Jimenez M; Laurencin CT; Sanders MM; Barry Carter C; Nukavarapu SP
    Biomed Mater; 2014 Jun; 9(3):035001. PubMed ID: 24687391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering.
    Yao J; Radin S; S Leboy P; Ducheyne P
    Biomaterials; 2005 May; 26(14):1935-43. PubMed ID: 15576167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite films of gelatin and hydroxyapatite/bioactive glass for tissue-engineering applications.
    Gentile P; Chiono V; Boccafoschi F; Baino F; Vitale-Brovarone C; Vernè E; Barbani N; Ciardelli G
    J Biomater Sci Polym Ed; 2010; 21(8-9):1207-26. PubMed ID: 20507716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses.
    Pamula E; Kokoszka J; Cholewa-Kowalska K; Laczka M; Kantor L; Niedzwiedzki L; Reilly GC; Filipowska J; Madej W; Kolodziejczyk M; Tylko G; Osyczka AM
    Ann Biomed Eng; 2011 Aug; 39(8):2114-29. PubMed ID: 21487840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties.
    Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.