BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 26510838)

  • 41. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures.
    Hanly TJ; Henson MA
    Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A kinetic model for curcumin production in Escherichia coli.
    Machado D; Rodrigues LR; Rocha I
    Biosystems; 2014 Nov; 125():16-21. PubMed ID: 25218090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic profiling of Escherichia coli cultivations: evaluation of extraction and metabolite analysis procedures.
    Hiller J; Franco-Lara E; Weuster-Botz D
    Biotechnol Lett; 2007 Aug; 29(8):1169-78. PubMed ID: 17479221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.
    Lin Z; Zhang Y; Yuan Q; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X
    Microb Cell Fact; 2015 Nov; 14():185. PubMed ID: 26589676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli.
    Kang Z; Wang X; Li Y; Wang Q; Qi Q
    Biotechnol Lett; 2012 Mar; 34(3):527-31. PubMed ID: 22083717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of systems biology with bioprocess engineering: L: -threonine production by systems metabolic engineering of Escherichia coli.
    Lee SY; Park JH
    Adv Biochem Eng Biotechnol; 2010; 120():1-19. PubMed ID: 20140658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media.
    Skorokhodova AY; Gulevich AY; Morzhakova AA; Shakulov RS; Debabov VG
    Biotechnol Lett; 2013 Apr; 35(4):577-83. PubMed ID: 23208454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of adaptive laboratory evolution to overcome a flux limitation in an Escherichia coli production strain.
    Tokuyama K; Toya Y; Horinouchi T; Furusawa C; Matsuda F; Shimizu H
    Biotechnol Bioeng; 2018 Jun; 115(6):1542-1551. PubMed ID: 29457640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural computation meta-heuristics for the in silico optimization of microbial strains.
    Rocha M; Maia P; Mendes R; Pinto JP; Ferreira EC; Nielsen J; Patil KR; Rocha I
    BMC Bioinformatics; 2008 Nov; 9():499. PubMed ID: 19038030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis.
    Widiastuti H; Kim JY; Selvarasu S; Karimi IA; Kim H; Seo JS; Lee DY
    Biotechnol Bioeng; 2011 Mar; 108(3):655-65. PubMed ID: 20967753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.
    Cotten C; Reed JL
    Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-scale analysis of Mannheimia succiniciproducens metabolism.
    Kim TY; Kim HU; Park JM; Song H; Kim JS; Lee SY
    Biotechnol Bioeng; 2007 Jul; 97(4):657-71. PubMed ID: 17405177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimating optimal profiles of genetic alterations using constraint-based models.
    Gadkar KG; Doyle Iii FJ; Edwards JS; Mahadevan R
    Biotechnol Bioeng; 2005 Jan; 89(2):243-51. PubMed ID: 15593263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement.
    Lakshmanan M; Chung BK; Liu C; Kim SW; Lee DY
    J Bioinform Comput Biol; 2013 Dec; 11(6):1343006. PubMed ID: 24372035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimising the production of succinate and lactate in Escherichia coli using a hybrid of artificial bee colony algorithm and minimisation of metabolic adjustment.
    Tang PW; Choon YW; Mohamad MS; Deris S; Napis S
    J Biosci Bioeng; 2015 Mar; 119(3):363-8. PubMed ID: 25216804
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.