These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Barchiesi J; Hedin N; Iglesias AA; Gomez-Casati DF; Ballicora MA; Busi MV Biochimie; 2017 Feb; 133():37-44. PubMed ID: 28003125 [TBL] [Abstract][Full Text] [Related]
3. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. Zhang X; Szydlowski N; Delvallé D; D'Hulst C; James MG; Myers AM BMC Plant Biol; 2008 Sep; 8():96. PubMed ID: 18811962 [TBL] [Abstract][Full Text] [Related]
4. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Valdez HA; Busi MV; Wayllace NZ; Parisi G; Ugalde RA; Gomez-Casati DF Biochemistry; 2008 Mar; 47(9):3026-32. PubMed ID: 18260645 [TBL] [Abstract][Full Text] [Related]
5. CBM20CP, a novel functional protein of starch metabolism in green algae. Hedin N; Velazquez MB; Barchiesi J; Gomez-Casati DF; Busi MV Plant Mol Biol; 2022 Mar; 108(4-5):363-378. PubMed ID: 34546521 [TBL] [Abstract][Full Text] [Related]
6. Starch-synthase III family encodes a tandem of three starch-binding domains. Palopoli N; Busi MV; Fornasari MS; Gomez-Casati D; Ugalde R; Parisi G Proteins; 2006 Oct; 65(1):27-31. PubMed ID: 16862594 [TBL] [Abstract][Full Text] [Related]
7. The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. Wayllace NZ; Valdez HA; Ugalde RA; Busi MV; Gomez-Casati DF FEBS J; 2010 Jan; 277(2):428-40. PubMed ID: 19968859 [TBL] [Abstract][Full Text] [Related]
9. Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Busi MV; Palopoli N; Valdez HA; Fornasari MS; Wayllace NZ; Gomez-Casati DF; Parisi G; Ugalde RA Proteins; 2008 Jan; 70(1):31-40. PubMed ID: 17623838 [TBL] [Abstract][Full Text] [Related]
10. Comparative in vitro analyses of recombinant maize starch synthases SSI, SSIIa, and SSIII reveal direct regulatory interactions and thermosensitivity. Huang B; Keeling PL; Hennen-Bierwagen TA; Myers AM Arch Biochem Biophys; 2016 Apr; 596():63-72. PubMed ID: 26940263 [TBL] [Abstract][Full Text] [Related]
11. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Martín M; Wayllace NZ; Valdez HA; Gomez-Casati DF; Busi MV Biochimie; 2013 Oct; 95(10):1865-70. PubMed ID: 23796574 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic characterization of starch synthase III from kidney bean (Phaseolus vulgaris L.). Senoura T; Asao A; Takashima Y; Isono N; Hamada S; Ito H; Matsui H FEBS J; 2007 Sep; 274(17):4550-60. PubMed ID: 17681016 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Hedin N; Barchiesi J; Gomez-Casati DF; Iglesias AA; Ballicora MA; Busi MV Arch Biochem Biophys; 2017 Mar; 618():52-61. PubMed ID: 28235467 [TBL] [Abstract][Full Text] [Related]
14. Specificity of starch synthase isoforms from potato. Edwards A; Borthakur A; Bornemann S; Venail J; Denyer K; Waite D; Fulton D; Smith A; Martin C Eur J Biochem; 1999 Dec; 266(3):724-36. PubMed ID: 10583366 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin. Brust H; Lehmann T; D'Hulst C; Fettke J PLoS One; 2014; 9(7):e102364. PubMed ID: 25014622 [TBL] [Abstract][Full Text] [Related]
16. Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Delvallé D; Dumez S; Wattebled F; Roldán I; Planchot V; Berbezy P; Colonna P; Vyas D; Chatterjee M; Ball S; Mérida A; D'Hulst C Plant J; 2005 Aug; 43(3):398-412. PubMed ID: 16045475 [TBL] [Abstract][Full Text] [Related]
17. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri. Carrillo JB; Gomez-Casati DF; Martín M; Busi MV PLoS One; 2018; 13(1):e0191621. PubMed ID: 29360855 [TBL] [Abstract][Full Text] [Related]
18. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Hennen-Bierwagen TA; Lin Q; Grimaud F; Planchot V; Keeling PL; James MG; Myers AM Plant Physiol; 2009 Mar; 149(3):1541-59. PubMed ID: 19168640 [TBL] [Abstract][Full Text] [Related]
19. The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Li Z; Mouille G; Kosar-Hashemi B; Rahman S; Clarke B; Gale KR; Appels R; Morell MK Plant Physiol; 2000 Jun; 123(2):613-24. PubMed ID: 10859191 [TBL] [Abstract][Full Text] [Related]
20. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Nakamura Y; Francisco PB; Hosaka Y; Sato A; Sawada T; Kubo A; Fujita N Plant Mol Biol; 2005 May; 58(2):213-27. PubMed ID: 16027975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]