BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 26511043)

  • 1. Damsel in distress: captured damselfish prey emit chemical cues that attract secondary predators and improve escape chances.
    Lönnstedt OM; McCormick MI
    Proc Biol Sci; 2015 Nov; 282(1818):20152038. PubMed ID: 26511043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-informed foraging: damage-released chemical cues of injured prey signal quality and size to predators.
    Lonnstedt OM; McCormick MI; Chivers DP
    Oecologia; 2012 Mar; 168(3):651-8. PubMed ID: 21947496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning temporal patterns of risk in a predator-diverse environment.
    Bosiger YJ; Lonnstedt OM; McCormick MI; Ferrari MC
    PLoS One; 2012; 7(4):e34535. PubMed ID: 22493699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coral reef fish predator maintains olfactory acuity in degraded coral habitats.
    Natt M; Lönnstedt OM; McCormick MI
    PLoS One; 2017; 12(6):e0179300. PubMed ID: 28658295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olfactory assessment of predation risk in the aquatic environment.
    Wisenden BD
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1205-8. PubMed ID: 11079399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Social learning and acquired recognition of a predator by a marine fish.
    Manassa RP; McCormick MI
    Anim Cogn; 2012 Jul; 15(4):559-65. PubMed ID: 22453926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation.
    Chivers DP; McCormick MI; Allan BJ; Ferrari MC
    Sci Rep; 2016 Sep; 6():32542. PubMed ID: 27611870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habitat degradation is threatening reef replenishment by making fish fearless.
    Lönnstedt OM; McCormick MI; Chivers DP; Ferrari MC
    J Anim Ecol; 2014 Sep; 83(5):1178-85. PubMed ID: 24498854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yellowtail damselfish Chrysiptera parasema can associate predation risk with the acoustic call of a heterospecific damselfish following pairing with conspecific alarm cues.
    Hanson KA; Mauland BA; Shastri A; Wisenden BD
    J Fish Biol; 2024 May; 104(5):1579-1586. PubMed ID: 38417911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top predators negate the effect of mesopredators on prey physiology.
    Palacios MM; Killen SS; Nadler LE; White JR; McCormick MI
    J Anim Ecol; 2016 Jul; 85(4):1078-86. PubMed ID: 27113316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat complexity modifies the impact of piscivores on a coral reef fish population.
    Beukers JS; Jones GP
    Oecologia; 1998 Mar; 114(1):50-59. PubMed ID: 28307557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smell, learn and live: the role of chemical alarm cues in predator learning during early life history in a marine fish.
    Holmes TH; McCormick MI
    Behav Processes; 2010 Mar; 83(3):299-305. PubMed ID: 20117187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted learning: habitat degradation impairs crucial antipredator responses in naive prey.
    McCormick MI; Lönnstedt OM
    Proc Biol Sci; 2016 May; 283(1830):. PubMed ID: 27170715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles.
    Hettyey A; Tóth Z; Thonhauser KE; Frommen JG; Penn DJ; Van Buskirk J
    Oecologia; 2015 Nov; 179(3):699-710. PubMed ID: 26163350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated CO2 affects predator-prey interactions through altered performance.
    Allan BJ; Domenici P; McCormick MI; Watson SA; Munday PL
    PLoS One; 2013; 8(3):e58520. PubMed ID: 23484032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the smell of fear from conspecific and heterospecific prey: investigating the processes that induce anti-predator defenses.
    Shaffery HM; Relyea RA
    Oecologia; 2016 Jan; 180(1):55-65. PubMed ID: 26363906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of Escape Responses: Prior Predator Experience Enhances Escape Performance in a Coral Reef Fish.
    Ramasamy RA; Allan BJ; McCormick MI
    PLoS One; 2015; 10(8):e0132790. PubMed ID: 26244861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friend or foe?: the role of latent inhibition in predator and non-predator labelling by coral reef fishes.
    Mitchell MD; McCormick MI; Ferrari MC; Chivers DP
    Anim Cogn; 2011 Sep; 14(5):707-14. PubMed ID: 21519901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress responses to chemical alarm cues in Nile tilapia.
    Sanches FH; Miyai CA; Pinho-Neto CF; Barreto RE
    Physiol Behav; 2015 Oct; 149():8-13. PubMed ID: 25992478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal links in daily activity patterns between coral reef predators and their prey.
    Bosiger YJ; McCormick MI
    PLoS One; 2014; 9(10):e111723. PubMed ID: 25354096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.