These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 26511241)

  • 1. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.
    Aberg KC; Doell KC; Schwartz S
    J Neurosci; 2015 Oct; 35(43):14491-500. PubMed ID: 26511241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere.
    Aberg KC; Doell KC; Schwartz S
    Neuropsychologia; 2016 Aug; 89():1-13. PubMed ID: 27221149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple value signals in dopaminergic midbrain and their role in avoidance contexts.
    Rigoli F; Chew B; Dayan P; Dolan RJ
    Neuroimage; 2016 Jul; 135():197-203. PubMed ID: 27132047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
    Diederen KM; Ziauddeen H; Vestergaard MD; Spencer T; Schultz W; Fletcher PC
    J Neurosci; 2017 Feb; 37(7):1708-1720. PubMed ID: 28202786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
    Sebold M; Garbusow M; Jetzschmann P; Schad DJ; Nebe S; Schlagenhauf F; Heinz A; Rapp M; Romanczuk-Seiferth N
    Psychopharmacology (Berl); 2019 Aug; 236(8):2437-2449. PubMed ID: 31254091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.
    Kim SH; Yoon H; Kim H; Hamann S
    Soc Cogn Affect Neurosci; 2015 Sep; 10(9):1219-27. PubMed ID: 25680989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression.
    Kumar P; Goer F; Murray L; Dillon DG; Beltzer ML; Cohen AL; Brooks NH; Pizzagalli DA
    Neuropsychopharmacology; 2018 Jun; 43(7):1581-1588. PubMed ID: 29540863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic Enhancement of Striatal Response to Reward in Major Depression.
    Admon R; Kaiser RH; Dillon DG; Beltzer M; Goer F; Olson DP; Vitaliano G; Pizzagalli DA
    Am J Psychiatry; 2017 Apr; 174(4):378-386. PubMed ID: 27771973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes.
    Cox SM; Frank MJ; Larcher K; Fellows LK; Clark CA; Leyton M; Dagher A
    Neuroimage; 2015 Apr; 109():95-101. PubMed ID: 25562824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking Individual Learning Styles to Approach-Avoidance Motivational Traits and Computational Aspects of Reinforcement Learning.
    Aberg KC; Doell KC; Schwartz S
    PLoS One; 2016; 11(11):e0166675. PubMed ID: 27851807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials.
    Joshua M; Adler A; Mitelman R; Vaadia E; Bergman H
    J Neurosci; 2008 Nov; 28(45):11673-84. PubMed ID: 18987203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential modulation of reinforcement learning by D2 dopamine and NMDA glutamate receptor antagonism.
    Jocham G; Klein TA; Ullsperger M
    J Neurosci; 2014 Sep; 34(39):13151-62. PubMed ID: 25253860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex.
    Howard JD; Kahnt T
    Nat Commun; 2018 Apr; 9(1):1611. PubMed ID: 29686225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.
    Rothkirch M; Tonn J; Köhler S; Sterzer P
    Brain; 2017 Apr; 140(4):1147-1157. PubMed ID: 28334960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
    Parker NF; Cameron CM; Taliaferro JP; Lee J; Choi JY; Davidson TJ; Daw ND; Witten IB
    Nat Neurosci; 2016 Jun; 19(6):845-54. PubMed ID: 27110917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontal cortical effects on feedback processing and reinforcement learning: Relation of EEG asymmetry with the feedback-related negativity and behavior.
    Schmid PC; Hackel LM; Jasperse L; Amodio DM
    Psychophysiology; 2018 Jan; 55(1):. PubMed ID: 28675507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cost of obtaining rewards enhances the reward prediction error signal of midbrain dopamine neurons.
    Tanaka S; O'Doherty JP; Sakagami M
    Nat Commun; 2019 Aug; 10(1):3674. PubMed ID: 31417077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.