These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 26511248)

  • 1. A Lognormal Recurrent Network Model for Burst Generation during Hippocampal Sharp Waves.
    Omura Y; Carvalho MM; Inokuchi K; Fukai T
    J Neurosci; 2015 Oct; 35(43):14585-601. PubMed ID: 26511248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of lognormal network synchrony in CA1.
    Weissenberger F; Einarsson H; Matheus Gauy M; Meier F; Mujika A; Lengler J; Steger A
    Hippocampus; 2018 Nov; 28(11):824-837. PubMed ID: 30024075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J; Coombes S; Mason R; Owen MR
    Hippocampus; 2012 May; 22(5):995-1017. PubMed ID: 21452258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of spike and burst rate in a minimal neuronal circuit with feed-forward inhibition.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2013 Apr; 40():1-17. PubMed ID: 23376681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice.
    Ding L; Chen H; Diamantaki M; Coletta S; Preston-Ferrer P; Burgalossi A
    J Neurosci; 2020 Jul; 40(30):5797-5806. PubMed ID: 32554511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.
    Moradi-Chameh H; Peng J; Wu C; Zhang L
    Neuroscience; 2014 Sep; 277():474-85. PubMed ID: 25088916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition.
    Neubrandt M; Oláh VJ; Brunner J; Marosi EL; Soltesz I; Szabadics J
    J Neurosci; 2018 Feb; 38(7):1711-1724. PubMed ID: 29335356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo.
    Traub RD; Whittington MA; Colling SB; Buzsáki G; Jefferys JG
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):471-84. PubMed ID: 8782110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
    Mizuseki K; Royer S; Diba K; Buzsáki G
    Hippocampus; 2012 Aug; 22(8):1659-80. PubMed ID: 22367959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational simulation of the input-output relationship in hippocampal pyramidal cells.
    Li X; Ascoli GA
    J Comput Neurosci; 2006 Oct; 21(2):191-209. PubMed ID: 16871350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpyramid spike transmission stabilizes the sparseness of recurrent network activity.
    Ikegaya Y; Sasaki T; Ishikawa D; Honma N; Tao K; Takahashi N; Minamisawa G; Ujita S; Matsuki N
    Cereb Cortex; 2013 Feb; 23(2):293-304. PubMed ID: 22314044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage model of memory trace formation: a role for "noisy" brain states.
    Buzsáki G
    Neuroscience; 1989; 31(3):551-70. PubMed ID: 2687720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1.
    Braun W; Memmesheimer RM
    PLoS Comput Biol; 2022 Feb; 18(2):e1009891. PubMed ID: 35176028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units.
    Fernández-Ruiz A; Makarov VA; Benito N; Herreras O
    J Neurosci; 2012 Apr; 32(15):5165-76. PubMed ID: 22496562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin.
    Kohus Z; Káli S; Rovira-Esteban L; Schlingloff D; Papp O; Freund TF; Hájos N; Gulyás AI
    J Physiol; 2016 Jul; 594(13):3745-74. PubMed ID: 27038232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.