These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 26511486)
1. Methylseleninic Acid Superactivates p53-Senescence Cancer Progression Barrier in Prostate Lesions of Pten-Knockout Mouse. Wang L; Guo X; Wang J; Jiang C; Bosland MC; Lü J; Deng Y Cancer Prev Res (Phila); 2016 Jan; 9(1):35-42. PubMed ID: 26511486 [TBL] [Abstract][Full Text] [Related]
2. Persistent p21Cip1 induction mediates G(1) cell cycle arrest by methylseleninic acid in DU145 prostate cancer cells. Wang Z; Lee HJ; Chai Y; Hu H; Wang L; Zhang Y; Jiang C; Lü J Curr Cancer Drug Targets; 2010 May; 10(3):307-18. PubMed ID: 20370687 [TBL] [Abstract][Full Text] [Related]
3. PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Hu H; Jiang C; Li G; Lü J Carcinogenesis; 2005 Aug; 26(8):1374-81. PubMed ID: 15845651 [TBL] [Abstract][Full Text] [Related]
4. Proteomic and transcriptomic profiling of Pten gene-knockout mouse model of prostate cancer. Zhang J; Kim S; Li L; Kemp CJ; Jiang C; Lü J Prostate; 2020 May; 80(7):588-605. PubMed ID: 32162714 [TBL] [Abstract][Full Text] [Related]
5. Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. Li GX; Hu H; Jiang C; Schuster T; Lü J Int J Cancer; 2007 May; 120(9):2034-43. PubMed ID: 17230520 [TBL] [Abstract][Full Text] [Related]
6. The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. Luchman HA; Benediktsson H; Villemaire ML; Peterson AC; Jirik FR PLoS One; 2008; 3(12):e3940. PubMed ID: 19081794 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression. Higgins J; Brogley M; Palanisamy N; Mehra R; Ittmann MM; Li JZ; Tomlins SA; Robins DM Horm Cancer; 2015 Jun; 6(2-3):67-86. PubMed ID: 25631336 [TBL] [Abstract][Full Text] [Related]
8. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Chen Z; Trotman LC; Shaffer D; Lin HK; Dotan ZA; Niki M; Koutcher JA; Scher HI; Ludwig T; Gerald W; Cordon-Cardo C; Pandolfi PP Nature; 2005 Aug; 436(7051):725-30. PubMed ID: 16079851 [TBL] [Abstract][Full Text] [Related]
9. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. González-Billalabeitia E; Seitzer N; Song SJ; Song MS; Patnaik A; Liu XS; Epping MT; Papa A; Hobbs RM; Chen M; Lunardi A; Ng C; Webster KA; Signoretti S; Loda M; Asara JM; Nardella C; Clohessy JG; Cantley LC; Pandolfi PP Cancer Discov; 2014 Aug; 4(8):896-904. PubMed ID: 24866151 [TBL] [Abstract][Full Text] [Related]
10. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Wang Z; Xu D; Ding HF; Kim J; Zhang J; Hai T; Yan C Oncogene; 2015 Sep; 34(38):4975-84. PubMed ID: 25531328 [TBL] [Abstract][Full Text] [Related]
11. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Xing C; Ci X; Sun X; Fu X; Zhang Z; Dong EN; Hao ZZ; Dong JT Neoplasia; 2014 Nov; 16(11):883-99. PubMed ID: 25425963 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Couto SS; Cao M; Duarte PC; Banach-Petrosky W; Wang S; Romanienko P; Wu H; Cardiff RD; Abate-Shen C; Cunha GR Differentiation; 2009 Jan; 77(1):103-11. PubMed ID: 19281769 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer. Yamamoto Y; De Velasco MA; Kura Y; Nozawa M; Hatanaka Y; Oki T; Ozeki T; Shimizu N; Minami T; Yoshimura K; Yoshikawa K; Nishio K; Uemura H J Transl Med; 2015 May; 13():150. PubMed ID: 25953027 [TBL] [Abstract][Full Text] [Related]
14. Methylseleninic acid elevates REDD1 and inhibits prostate cancer cell growth despite AKT activation and mTOR dysregulation in hypoxia. Sinha I; Allen JE; Pinto JT; Sinha R Cancer Med; 2014 Apr; 3(2):252-64. PubMed ID: 24515947 [TBL] [Abstract][Full Text] [Related]
15. Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Chen Z; Carracedo A; Lin HK; Koutcher JA; Behrendt N; Egia A; Alimonti A; Carver BS; Gerald W; Teruya-Feldstein J; Loda M; Pandolfi PP Sci Signal; 2009 Aug; 2(84):ra44. PubMed ID: 19690330 [TBL] [Abstract][Full Text] [Related]
16. Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCε, Stat3, and Epithelial-to-Mesenchymal Transition Markers. Hafeez BB; Fischer JW; Singh A; Zhong W; Mustafa A; Meske L; Sheikhani MO; Verma AK Cancer Prev Res (Phila); 2015 May; 8(5):375-86. PubMed ID: 25627799 [TBL] [Abstract][Full Text] [Related]
17. Methylseleninic acid downregulates hypoxia-inducible factor-1α in invasive prostate cancer. Sinha I; Null K; Wolter W; Suckow MA; King T; Pinto JT; Sinha R Int J Cancer; 2012 Mar; 130(6):1430-9. PubMed ID: 21500193 [TBL] [Abstract][Full Text] [Related]
18. Parisotto M; Grelet E; El Bizri R; Dai Y; Terzic J; Eckert D; Gargowitsch L; Bornert JM; Metzger D J Exp Med; 2018 Jun; 215(6):1749-1763. PubMed ID: 29743291 [TBL] [Abstract][Full Text] [Related]
19. Antimitogenic and proapoptotic activities of methylseleninic acid in vascular endothelial cells and associated effects on PI3K-AKT, ERK, JNK and p38 MAPK signaling. Wang Z; Jiang C; Ganther H; Lü J Cancer Res; 2001 Oct; 61(19):7171-8. PubMed ID: 11585751 [TBL] [Abstract][Full Text] [Related]
20. IL-6/STAT3/ARF: the guardians of senescence, cancer progression and metastasis in prostate cancer. Pencik J; Wiebringhaus R; Susani M; Culig Z; Kenner L Swiss Med Wkly; 2015; 145():w14215. PubMed ID: 26691865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]