These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26511921)

  • 1. Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau.
    Ma X; Kang J; Chen W; Zhou C; He S
    BMC Evol Biol; 2015 Oct; 15():233. PubMed ID: 26511921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences.
    Guo X; He S; Zhang Y
    Mol Phylogenet Evol; 2005 May; 35(2):344-62. PubMed ID: 15804408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes.
    Ma X; Dai W; Kang J; Yang L; He S
    G3 (Bethesda); 2015 Nov; 6(1):141-8. PubMed ID: 26564948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The uplift of Qinghai-Xizang (Tibet) Plateau and the vicariance speciation of glyptosternoid fishes (Siluriformes: Sisoridae).
    He S; Cao W; Chen Y
    Sci China C Life Sci; 2001 Dec; 44(6):644-51. PubMed ID: 18763106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences.
    Peng Z; He S; Zhang Y
    Mol Phylogenet Evol; 2004 Jun; 31(3):979-87. PubMed ID: 15120395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic relationships and estimation of divergence times among Sisoridae catfishes.
    Yu M; He S
    Sci China Life Sci; 2012 Apr; 55(4):312-20. PubMed ID: 22566087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enlarged fins of Tibetan catfish provide new evidence of adaptation to high plateau.
    Yang L; Sun N; Zeng H; Wang Y; Chen W; Ding Z; Liu Y; Wang J; Meng M; Shen Y; Kang J; Ma X; Lv W; Chen J; Meyer A; Guo B; He S
    Sci China Life Sci; 2023 Jul; 66(7):1554-1568. PubMed ID: 36802318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Complete Mitochondrial Genome of
    Lv Y; Li Y; Ruan Z; Bian C; You X; Yang J; Jiang W; Shi Q
    Genes (Basel); 2018 Jun; 9(6):. PubMed ID: 29867051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude.
    Wang Y; Shen Y; Feng C; Zhao K; Song Z; Zhang Y; Yang L; He S
    Sci Rep; 2016 Jul; 6():29690. PubMed ID: 27417983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau.
    Yang L; Wang Y; Sun N; Chen J; He S
    Mol Ecol; 2021 Nov; 30(22):5752-5764. PubMed ID: 34516715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes.
    Peng Z; Ho SY; Zhang Y; He S
    Mol Phylogenet Evol; 2006 May; 39(2):568-72. PubMed ID: 16364665
    [No Abstract]   [Full Text] [Related]  

  • 13. High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses.
    Li Y; Ren Z; Shedlock AM; Wu J; Sang L; Tersing T; Hasegawa M; Yonezawa T; Zhong Y
    Gene; 2013 Apr; 517(2):169-78. PubMed ID: 23328645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau.
    Yuan ML; Zhang QL; Zhang L; Jia CL; Li XP; Yang XZ; Feng RQ
    Mol Phylogenet Evol; 2018 May; 122():116-124. PubMed ID: 29408286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis.
    Kang J; Ma X; He S
    BMC Evol Biol; 2017 Nov; 17(1):229. PubMed ID: 29169322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exostoma tibetana, a new glyptosternine catfish from the lower Yarlung Tsangpo River drainage in southeastern Tibet, China (Siluriformes: Sisoridae).
    Gong Z; Lin P; Liu F; Liu H
    Zootaxa; 2018 Dec; 4527(3):392-402. PubMed ID: 30651433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome and adaptive evolution analysis on the main liver and attaching liver of Pareuchiloglanis macrotrema.
    Wu Q; Zhang X; Li J; Deng L; Wang D; Liao M; Guo Z; Huang X; Chen D; Wang Y; Yang S; Du Z; Luo W
    J Appl Genet; 2022 Dec; 63(4):743-761. PubMed ID: 35931930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau.
    Liu H; Liu Q; Chen Z; Liu Y; Zhou C; Liang Q; Ma C; Zhou J; Pan Y; Chen M; Wangjiu ; Jiang W; Xiao S; Mou Z
    Gigascience; 2018 Sep; 7(9):. PubMed ID: 30124856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive transcriptome analysis reveals accelerated genic evolution in a Tibet fish, Gymnodiptychus pachycheilus.
    Yang L; Wang Y; Zhang Z; He S
    Genome Biol Evol; 2014 Dec; 7(1):251-61. PubMed ID: 25543049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome.
    Xu S; Luosang J; Hua S; He J; Ciren A; Wang W; Tong X; Liang Y; Wang J; Zheng X
    J Genet Genomics; 2007 Aug; 34(8):720-9. PubMed ID: 17707216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.