These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26512474)

  • 1. Direct measurements of forces induced by Bloch surface waves in a one-dimensional photonic crystal.
    Shilkin DA; Lyubin EV; Soboleva IV; Fedyanin AA
    Opt Lett; 2015 Nov; 40(21):4883-6. PubMed ID: 26512474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Bloch waves in resonantly doped photonic crystals.
    Kaso A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046611. PubMed ID: 17155196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional polymer grating and prism on Bloch surface waves platform.
    Yu L; Barakat E; Di Francesco J; Herzig HP
    Opt Express; 2015 Dec; 23(25):31640-7. PubMed ID: 26698957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical pulling and pushing forces via Bloch surface waves.
    Kostina N; Petrov M; Bobrovs V; Shalin AS
    Opt Lett; 2022 Sep; 47(18):4592-4595. PubMed ID: 36107040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bloch modes at the surface of a photonic crystal interacting with a waveguide.
    Munguía-Arvayo R; García-Llamas R; Gaspar-Armenta J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1588-94. PubMed ID: 25121447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of thickness disorder on the performance of photonic crystal surface wave sensors.
    Anopchenko A; Occhicone A; Rizzo R; Sinibaldi A; Figliozzi G; Danz N; Munzert P; Michelotti F
    Opt Express; 2016 Apr; 24(7):7728-42. PubMed ID: 27137058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subwavelength structure of the evanescent field of an optical Bloch wave.
    Engelen RJ; Mori D; Baba T; Kuipers L
    Phys Rev Lett; 2009 Jan; 102(2):023902. PubMed ID: 19257275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse photonic design of functional elements that focus Bloch surface waves.
    Augenstein Y; Vetter A; Lahijani BV; Herzig HP; Rockstuhl C; Kim MS
    Light Sci Appl; 2018; 7():104. PubMed ID: 30564310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-shifted Bragg gratings for Bloch surface waves.
    Doskolovich LL; Bezus EA; Bykov DA
    Opt Express; 2015 Oct; 23(21):27034-45. PubMed ID: 26480365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Bloch surface waves and directional propagation effects on one-dimensional photonic crystal substrate.
    Hung YJ; Lin IS
    Opt Express; 2016 Jul; 24(14):16003-9. PubMed ID: 27410869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths.
    Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Monitoring of Human IgG/Anti-IgG Recognition Using Bloch Surface Waves on 1D Photonic Crystals.
    Sinibaldi A; Occhicone A; Munzert P; Danz N; Sonntag F; Michelotti F
    Biosensors (Basel); 2018 Jul; 8(3):. PubMed ID: 30044392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.
    Sinibaldi A; Descrovi E; Giorgis F; Dominici L; Ballarini M; Mandracci P; Danz N; Michelotti F
    Biomed Opt Express; 2012 Oct; 3(10):2405-10. PubMed ID: 23082282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals.
    Sinibaldi A; Rizzo R; Figliozzi G; Descrovi E; Danz N; Munzert P; Anopchenko A; Michelotti F
    Opt Express; 2013 Oct; 21(20):23331-44. PubMed ID: 24104247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical surface Bloch modes of complete photonic bandgap materials as a basis of optical sensing.
    Su SY; Tang L; Yoshie T
    Opt Lett; 2011 Jun; 36(12):2266-8. PubMed ID: 21685988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow light by Bloch surface wave tunneling.
    Koju V; Robertson WM
    Opt Express; 2014 Jun; 22(13):15679-85. PubMed ID: 24977827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films.
    Kovalevich T; Ndao A; Suarez M; Tumenas S; Balevicius Z; Ramanavicius A; Baleviciute I; Häyrinen M; Roussey M; Kuittinen M; Grosjean T; Bernal MP
    Opt Lett; 2016 Dec; 41(23):5616-5619. PubMed ID: 27906253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals.
    Fang K; Wang Y
    Phys Rev Lett; 2019 Jun; 122(23):233904. PubMed ID: 31298903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.