These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26512481)

  • 1. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7  μm optical coherence tomography.
    Chong SP; Merkle CW; Cooke DF; Zhang T; Radhakrishnan H; Krubitzer L; Srinivasan VJ
    Opt Lett; 2015 Nov; 40(21):4911-4. PubMed ID: 26512481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo.
    Choi WJ; Wang RK
    J Biomed Opt; 2015 Oct; 20(10):106004. PubMed ID: 26447860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of optical sources in the near infrared for optical coherence tomography applications.
    Carrion L; Lestrade M; Xu Z; Touma G; Maciejko R; Bertrand M
    J Biomed Opt; 2007; 12(1):014017. PubMed ID: 17343492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source.
    Dai C; Liu X; Jiao S
    J Biomed Opt; 2012 Aug; 17(8):080502-1. PubMed ID: 23224153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
    Yao X; Gan Y; Marboe CC; Hendon CP
    J Biomed Opt; 2016 Jun; 21(6):61006. PubMed ID: 27001162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined two-photon microscopy and optical coherence tomography using individually optimized sources.
    Jeong B; Lee B; Jang MS; Nam H; Yoon SJ; Wang T; Doh J; Yang BG; Jang MH; Kim KH
    Opt Express; 2011 Jul; 19(14):13089-96. PubMed ID: 21747461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography.
    Zotter S; Pircher M; Torzicky T; Bonesi M; Götzinger E; Leitgeb RA; Hitzenberger CK
    Opt Express; 2011 Jan; 19(2):1217-27. PubMed ID: 21263663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High precision dynamic multi-interface profilometry with optical coherence tomography.
    Lawman S; Liang H
    Appl Opt; 2011 Nov; 50(32):6039-48. PubMed ID: 22083374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging.
    Jeong HW; Lee SW; Kim BM
    Opt Express; 2012 Aug; 20(17):19148-59. PubMed ID: 23038555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IR microscopy utilizing intense supercontinuum light source.
    Dupont S; Petersen C; Thøgersen J; Agger C; Bang O; Keiding SR
    Opt Express; 2012 Feb; 20(5):4887-92. PubMed ID: 22418294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid near-infrared diffuse tomography for hemodynamic imaging using a low-coherence wideband light source.
    Piao D; Pogue BW
    J Biomed Opt; 2007; 12(1):014016. PubMed ID: 17343491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography.
    Patil CA; Kalkman J; Faber DJ; Nyman JS; van Leeuwen TG; Mahadevan-Jansen A
    J Biomed Opt; 2011; 16(1):011007. PubMed ID: 21280894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography.
    Nyúl-Tóth Á; Tarantini S; DelFavero J; Yan F; Balasubramanian P; Yabluchanskiy A; Ahire C; Kiss T; Csipo T; Lipecz A; Farkas AE; Wilhelm I; Krizbai IA; Tang Q; Csiszar A; Ungvari Z
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1370-H1392. PubMed ID: 33543687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination.
    Grulkowski I; Szulzycki K; Wojtkowski M
    Opt Express; 2014 Dec; 22(26):31746-60. PubMed ID: 25607144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free optical-resolution photoacoustic microscopy of superficial microvasculature using a compact visible laser diode excitation.
    Zeng L; Piao Z; Huang S; Jia W; Chen Z
    Opt Express; 2015 Nov; 23(24):31026-33. PubMed ID: 26698732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation.
    Barui A; Banerjee P; Patra R; Das RK; Dhara S; Dutta PK; Chatterjee J
    J Biomed Opt; 2011 Feb; 16(2):026010. PubMed ID: 21361694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography.
    Makita S; Jaillon F; Yamanari M; Miura M; Yasuno Y
    Opt Express; 2011 Jan; 19(2):1271-83. PubMed ID: 21263668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying RGB LED in full-field optical coherence tomography for real-time full-color tissue imaging.
    Yang BW; Wang YY; Lin YM; Juan YS; Chen HT; Ying SP
    Appl Opt; 2014 Aug; 53(22):E56-60. PubMed ID: 25090355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study.
    Xi L; Duan C; Xie H; Jiang H
    Appl Opt; 2013 Mar; 52(9):1928-31. PubMed ID: 23518738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.