These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 26512505)
1. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source. Song S; Le NM; Huang Z; Shen T; Wang RK Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505 [TBL] [Abstract][Full Text] [Related]
2. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography. Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970 [TBL] [Abstract][Full Text] [Related]
3. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography. Qiu W; Wang C; Li Y; Zhou J; Yang G; Xiao Y; Feng G; Jin Q; Mu P; Qian M; Zheng H Ultrasonics; 2015 Sep; 62():89-96. PubMed ID: 26025508 [TBL] [Abstract][Full Text] [Related]
4. From supersonic shear wave imaging to full-field optical coherence shear wave elastography. Nahas A; Tanter M; Nguyen TM; Chassot JM; Fink M; Claude Boccara A J Biomed Opt; 2013 Dec; 18(12):121514. PubMed ID: 24357549 [TBL] [Abstract][Full Text] [Related]
5. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms. Manickam K; Machireddy RR; Seshadri S Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832 [TBL] [Abstract][Full Text] [Related]
6. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography. Nguyen TM; Song S; Arnal B; Huang Z; O'Donnell M; Wang RK Opt Lett; 2014 Feb; 39(4):838-41. PubMed ID: 24562220 [TBL] [Abstract][Full Text] [Related]
7. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues. Karpiouk AB; VanderLaan DJ; Larin KV; Emelianov SY J Biomed Opt; 2018 Oct; 23(10):1-7. PubMed ID: 30369107 [TBL] [Abstract][Full Text] [Related]
8. Shear wave elasticity imaging based on acoustic radiation force and optical detection. Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816 [TBL] [Abstract][Full Text] [Related]
9. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. Singh M; Wu C; Liu CH; Li J; Schill A; Nair A; Larin KV Opt Lett; 2015 Jun; 40(11):2588-91. PubMed ID: 26030564 [TBL] [Abstract][Full Text] [Related]
10. 4-D ultrafast shear-wave imaging. Gennisson JL; Provost J; Deffieux T; Papadacci C; Imbault M; Pernot M; Tanter M IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1059-65. PubMed ID: 26067040 [TBL] [Abstract][Full Text] [Related]
11. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography. Xu X; Zhu J; Chen Z Sci Rep; 2016 Apr; 6():24294. PubMed ID: 27090437 [TBL] [Abstract][Full Text] [Related]
12. Normal values of liver shear wave velocity in healthy children assessed by acoustic radiation force impulse imaging using a convex probe and a linear probe. Fontanilla T; Cañas T; Macia A; Alfageme M; Gutierrez Junquera C; Malalana A; Luz Cilleruelo M; Roman E; Miralles M Ultrasound Med Biol; 2014 Mar; 40(3):470-7. PubMed ID: 24361222 [TBL] [Abstract][Full Text] [Related]
13. Lorentz force optical coherence elastography. Wu C; Singh M; Han Z; Raghunathan R; Liu CH; Li J; Schill A; Larin KV J Biomed Opt; 2016 Sep; 21(9):90502. PubMed ID: 27622242 [TBL] [Abstract][Full Text] [Related]
14. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. Song S; Huang Z; Nguyen TM; Wong EY; Arnal B; O'Donnell M; Wang RK J Biomed Opt; 2013 Dec; 18(12):121509. PubMed ID: 24213539 [TBL] [Abstract][Full Text] [Related]
15. Does group velocity always reflect elastic modulus in shear wave elastography? Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691 [TBL] [Abstract][Full Text] [Related]
16. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method. Zhu J; Qu Y; Ma T; Li R; Du Y; Huang S; Shung KK; Zhou Q; Chen Z Opt Lett; 2015 May; 40(9):2099-102. PubMed ID: 25927794 [TBL] [Abstract][Full Text] [Related]
17. Audio frequency in vivo optical coherence elastography. Adie SG; Kennedy BF; Armstrong JJ; Alexandrov SA; Sampson DD Phys Med Biol; 2009 May; 54(10):3129-39. PubMed ID: 19420415 [TBL] [Abstract][Full Text] [Related]
18. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography. Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Razani M; Mariampillai A; Sun C; Luk TW; Yang VX; Kolios MC Biomed Opt Express; 2012 May; 3(5):972-80. PubMed ID: 22567590 [TBL] [Abstract][Full Text] [Related]
20. Electronically controlled coherent linear optical sampling for optical coherence tomography. Kray S; Spöler F; Hellerer T; Kurz H Opt Express; 2010 May; 18(10):9976-90. PubMed ID: 20588852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]