BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 26512505)

  • 1. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
    Qiu W; Wang C; Li Y; Zhou J; Yang G; Xiao Y; Feng G; Jin Q; Mu P; Qian M; Zheng H
    Ultrasonics; 2015 Sep; 62():89-96. PubMed ID: 26025508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From supersonic shear wave imaging to full-field optical coherence shear wave elastography.
    Nahas A; Tanter M; Nguyen TM; Chassot JM; Fink M; Claude Boccara A
    J Biomed Opt; 2013 Dec; 18(12):121514. PubMed ID: 24357549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography.
    Nguyen TM; Song S; Arnal B; Huang Z; O'Donnell M; Wang RK
    Opt Lett; 2014 Feb; 39(4):838-41. PubMed ID: 24562220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues.
    Karpiouk AB; VanderLaan DJ; Larin KV; Emelianov SY
    J Biomed Opt; 2018 Oct; 23(10):1-7. PubMed ID: 30369107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second.
    Singh M; Wu C; Liu CH; Li J; Schill A; Nair A; Larin KV
    Opt Lett; 2015 Jun; 40(11):2588-91. PubMed ID: 26030564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-D ultrafast shear-wave imaging.
    Gennisson JL; Provost J; Deffieux T; Papadacci C; Imbault M; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1059-65. PubMed ID: 26067040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography.
    Xu X; Zhu J; Chen Z
    Sci Rep; 2016 Apr; 6():24294. PubMed ID: 27090437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal values of liver shear wave velocity in healthy children assessed by acoustic radiation force impulse imaging using a convex probe and a linear probe.
    Fontanilla T; Cañas T; Macia A; Alfageme M; Gutierrez Junquera C; Malalana A; Luz Cilleruelo M; Roman E; Miralles M
    Ultrasound Med Biol; 2014 Mar; 40(3):470-7. PubMed ID: 24361222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lorentz force optical coherence elastography.
    Wu C; Singh M; Han Z; Raghunathan R; Liu CH; Li J; Schill A; Larin KV
    J Biomed Opt; 2016 Sep; 21(9):90502. PubMed ID: 27622242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography.
    Song S; Huang Z; Nguyen TM; Wong EY; Arnal B; O'Donnell M; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121509. PubMed ID: 24213539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does group velocity always reflect elastic modulus in shear wave elastography?
    Pelivanov I; Gao L; Pitre J; Kirby M; Song S; Li D; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Jul; 24(7):1-11. PubMed ID: 31342691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.
    Zhu J; Qu Y; Ma T; Li R; Du Y; Huang S; Shung KK; Zhou Q; Chen Z
    Opt Lett; 2015 May; 40(9):2099-102. PubMed ID: 25927794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audio frequency in vivo optical coherence elastography.
    Adie SG; Kennedy BF; Armstrong JJ; Alexandrov SA; Sampson DD
    Phys Med Biol; 2009 May; 54(10):3129-39. PubMed ID: 19420415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms.
    Razani M; Mariampillai A; Sun C; Luk TW; Yang VX; Kolios MC
    Biomed Opt Express; 2012 May; 3(5):972-80. PubMed ID: 22567590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronically controlled coherent linear optical sampling for optical coherence tomography.
    Kray S; Spöler F; Hellerer T; Kurz H
    Opt Express; 2010 May; 18(10):9976-90. PubMed ID: 20588852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.