These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26512859)

  • 1. Continuous harvesting of microalgae by new microfluidic technology for particle separation.
    Hønsvall BK; Altin D; Robertson LJ
    Bioresour Technol; 2016 Jan; 200():360-5. PubMed ID: 26512859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae.
    Shakeel Syed M; Rafeie M; Henderson R; Vandamme D; Asadnia M; Ebrahimi Warkiani M
    Lab Chip; 2017 Jul; 17(14):2459-2469. PubMed ID: 28695927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for microalgal biotechnology.
    Ozdalgic B; Ustun M; Dabbagh SR; Haznedaroglu BZ; Kiraz A; Tasoglu S
    Biotechnol Bioeng; 2021 Apr; 118(4):1545-1563. PubMed ID: 33410126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains.
    Araujo GS; Matos LJ; Gonçalves LR; Fernandes FA; Farias WR
    Bioresour Technol; 2011 Apr; 102(8):5248-50. PubMed ID: 21353534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip.
    Wang Y; Wang J; Wu X; Jiang Z; Wang W
    Electrophoresis; 2019 Mar; 40(6):969-978. PubMed ID: 30221789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
    Ndikubwimana T; Chang J; Xiao Z; Shao W; Zeng X; Ng IS; Lu Y
    Biotechnol J; 2016 Mar; 11(3):315-26. PubMed ID: 26928758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity.
    Paik SM; Sim SJ; Jeon NL
    Bioresour Technol; 2017 Jun; 233():433-437. PubMed ID: 28279610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective harvesting of low surface-hydrophobicity microalgae by froth flotation.
    Garg S; Wang L; Schenk PM
    Bioresour Technol; 2014 May; 159():437-41. PubMed ID: 24690467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and rapid harvesting method for microalgae by in situ magnetic separation.
    Xu L; Guo C; Wang F; Zheng S; Liu CZ
    Bioresour Technol; 2011 Nov; 102(21):10047-51. PubMed ID: 21890346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass.
    Huang WC; Kim JD
    Bioresour Technol; 2013 Dec; 149():579-81. PubMed ID: 24128606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient harvesting of Chaetoceros calcitrans for biodiesel production.
    Şirin S; Clavero E; Salvadó J
    Environ Technol; 2015; 36(13-16):1902-12. PubMed ID: 25655268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles.
    Hu YR; Wang F; Wang SK; Liu CZ; Guo C
    Bioresour Technol; 2013 Jun; 138():387-90. PubMed ID: 23639490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp. FL06.
    Lei X; Zheng W; Ding H; Zhu X; Chen Q; Xu H; Zheng T; Tian Y
    Bioresour Technol; 2018 Dec; 269():127-133. PubMed ID: 30165270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective separation of microalgae cells using inertial microfluidics.
    Syed MS; Rafeie M; Vandamme D; Asadnia M; Henderson R; Taylor RA; Warkiani ME
    Bioresour Technol; 2018 Mar; 252():91-99. PubMed ID: 29306136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition.
    Feng CY; Wei JF; Li YJ; Yang YS; Wang YH; Lu L; Zheng GX
    Analyst; 2016 Mar; 141(5):1761-71. PubMed ID: 26824675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic particle detection and sorting in an electrokinetic microfluidic chip.
    Song Y; Peng R; Wang J; Pan X; Sun Y; Li D
    Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.