These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26512884)

  • 1. Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices.
    Balazs DM; Dirin DN; Fang HH; Protesescu L; ten Brink GH; Kooi BJ; Kovalenko MV; Loi MA
    ACS Nano; 2015 Dec; 9(12):11951-9. PubMed ID: 26512884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands.
    Bederak D; Sukharevska N; Kahmann S; Abdu-Aguye M; Duim H; Dirin DN; Kovalenko MV; Portale G; Loi MA
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52959-52966. PubMed ID: 33174723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells.
    Bederak D; Balazs DM; Sukharevska NV; Shulga AG; Abdu-Aguye M; Dirin DN; Kovalenko MV; Loi MA
    ACS Appl Nano Mater; 2018 Dec; 1(12):6882-6889. PubMed ID: 30613830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution Annealing Induces Surface Chemical Reconstruction for High-Efficiency PbS Quantum Dot Solar Cells.
    Liu X; Fu T; Liu J; Wang Y; Jia Y; Wang C; Li X; Zhang X; Liu Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14274-14283. PubMed ID: 35289178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots.
    Skurlov ID; Korzhenevskii IG; Mudrak AS; Dubavik A; Cherevkov SA; Parfenov PS; Zhang X; Fedorov AV; Litvin AP; Baranov AV
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31581439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping.
    Ngo TT; Masi S; Mendez PF; Kazes M; Oron D; Seró IM
    Nanoscale Adv; 2019 Oct; 1(10):4109-4118. PubMed ID: 36132121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI
    Aynehband S; Mohammadi M; Thorwarth K; Hany R; Nüesch FA; Rossell MD; Pauer R; Nunzi JM; Simchi A
    ACS Omega; 2020 Jun; 5(25):15746-15754. PubMed ID: 32637850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots.
    Choi MJ; Sagar LK; Sun B; Biondi M; Lee S; Najjariyan AM; Levina L; García de Arquer FP; Sargent EH
    Nano Lett; 2021 Jul; 21(14):6057-6063. PubMed ID: 34250796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange.
    Yang M; Liu H; Wen S; Du Y; Gao F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement.
    Liu Y; Peard N; Grossman JC
    J Phys Chem Lett; 2019 Jul; 10(13):3756-3762. PubMed ID: 31185712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron Mobility of 24 cm
    Balazs DM; Matysiak BM; Momand J; Shulga AG; Ibáñez M; Kovalenko MV; Kooi BJ; Loi MA
    Adv Mater; 2018 Sep; 30(38):e1802265. PubMed ID: 30069938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation.
    Tang J; Kemp KW; Hoogland S; Jeong KS; Liu H; Levina L; Furukawa M; Wang X; Debnath R; Cha D; Chou KW; Fischer A; Amassian A; Asbury JB; Sargent EH
    Nat Mater; 2011 Oct; 10(10):765-71. PubMed ID: 21927006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids.
    Jo JW; Choi J; García de Arquer FP; Seifitokaldani A; Sun B; Kim Y; Ahn H; Fan J; Quintero-Bermudez R; Kim J; Choi MJ; Baek SW; Proppe AH; Walters G; Nam DH; Kelley S; Hoogland S; Voznyy O; Sargent EH
    Nano Lett; 2018 Jul; 18(7):4417-4423. PubMed ID: 29912564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PbI
    Pinna J; Pili E; Mehrabi Koushki R; Gavhane DS; Carlà F; Kooi BJ; Portale G; Loi MA
    ACS Nano; 2024 Jul; 18(29):19124-19136. PubMed ID: 38954751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Photonic Processing of High-Electron-Mobility PbS Colloidal Quantum Dot Transistors.
    Nugraha MI; Yarali E; Firdaus Y; Lin Y; El-Labban A; Gedda M; Lidorikis E; Yengel E; Faber H; Anthopoulos TD
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31591-31600. PubMed ID: 32564590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal.
    Balazs DM; Rizkia N; Fang HH; Dirin DN; Momand J; Kooi BJ; Kovalenko MV; Loi MA
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5626-5632. PubMed ID: 29368501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.
    Lan X; Voznyy O; García de Arquer FP; Liu M; Xu J; Proppe AH; Walters G; Fan F; Tan H; Liu M; Yang Z; Hoogland S; Sargent EH
    Nano Lett; 2016 Jul; 16(7):4630-4. PubMed ID: 27351104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Solution-Processed Quantum Dot Electrical Double-Layer Transistors Enhanced by Surface Charges of Ti
    Kim H; Nugraha MI; Guan X; Wang Z; Hota MK; Xu X; Wu T; Baran D; Anthopoulos TD; Alshareef HN
    ACS Nano; 2021 Mar; 15(3):5221-5229. PubMed ID: 33635642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency.
    Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C
    Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons.
    Maulu A; Navarro-Arenas J; Rodríguez-Cantó PJ; Sánchez-Royo JF; Abargues R; Suárez I; Martínez-Pastor JP
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30200230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.