BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1096 related articles for article (PubMed ID: 26513284)

  • 1. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.
    Xia Y; Si J; Li Z
    Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based chemical and biological sensors: Engineering aspects.
    Ahmed S; Bui MP; Abbas A
    Biosens Bioelectron; 2016 Mar; 77():249-63. PubMed ID: 26410389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paper-based electrochemiluminescent 3D immunodevice for lab-on-paper, specific, and sensitive point-of-care testing.
    Yan J; Ge L; Song X; Yan M; Ge S; Yu J
    Chemistry; 2012 Apr; 18(16):4938-45. PubMed ID: 22392821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing.
    Wang S; Ge L; Song X; Yu J; Ge S; Huang J; Zeng F
    Biosens Bioelectron; 2012 Jan; 31(1):212-8. PubMed ID: 22051546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in paper-based point-of-care diagnostics.
    Hu J; Wang S; Wang L; Li F; Pingguan-Murphy B; Lu TJ; Xu F
    Biosens Bioelectron; 2014 Apr; 54():585-97. PubMed ID: 24333570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic enzymatic biosensing systems: A review.
    Mross S; Pierrat S; Zimmermann T; Kraft M
    Biosens Bioelectron; 2015 Aug; 70():376-91. PubMed ID: 25841121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme embedded microfluidic paper-based analytic device (μPAD): a comprehensive review.
    Nadar SS; Patil PD; Tiwari MS; Ahirrao DJ
    Crit Rev Biotechnol; 2021 Nov; 41(7):1046-1080. PubMed ID: 33730940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards autonomous lab-on-a-chip devices for cell phone biosensing.
    Comina G; Suska A; Filippini D
    Biosens Bioelectron; 2016 Mar; 77():1153-67. PubMed ID: 26569446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (µPADs) for point-of-care testing (POCT).
    Tian T; Wei X; Jia S; Zhang R; Li J; Zhu Z; Zhang H; Ma Y; Lin Z; Yang CJ
    Biosens Bioelectron; 2016 Mar; 77():537-42. PubMed ID: 26474094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical-sensor system for real-time flow measurements in porous materials.
    Bathany C; Han JR; Abi-Samra K; Takayama S; Cho YK
    Biosens Bioelectron; 2015 Aug; 70():115-21. PubMed ID: 25797850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin.
    Cao L; Fang C; Zeng R; Zhao X; Jiang Y; Chen Z
    Biosens Bioelectron; 2017 Jun; 92():87-94. PubMed ID: 28189070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications.
    Chinnadayyala SR; Park J; Le HTN; Santhosh M; Kadam AN; Cho S
    Biosens Bioelectron; 2019 Feb; 126():68-81. PubMed ID: 30391911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing.
    Wang P; Ge L; Yan M; Song X; Ge S; Yu J
    Biosens Bioelectron; 2012 Feb; 32(1):238-43. PubMed ID: 22226410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing.
    Ge L; Yan J; Song X; Yan M; Ge S; Yu J
    Biomaterials; 2012 Feb; 33(4):1024-31. PubMed ID: 22074665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disposable microfluidic devices: fabrication, function, and application.
    Fiorini GS; Chiu DT
    Biotechniques; 2005 Mar; 38(3):429-46. PubMed ID: 15786809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays.
    Fu H; Yang J; Guo L; Nie J; Yin Q; Zhang L; Zhang Y
    Biosens Bioelectron; 2017 Oct; 96():194-200. PubMed ID: 28499195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.