These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 26513300)

  • 1. Solvation effects on the band edge positions of photocatalysts from first principles.
    Ping Y; Sundararaman R; Goddard WA
    Phys Chem Chem Phys; 2015 Nov; 17(45):30499-509. PubMed ID: 26513300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial effects on the band edges of functionalized si surfaces in liquid water.
    Pham TA; Lee D; Schwegler E; Galli G
    J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles electrostatic potentials for reliable alignment at interfaces and defects.
    Sundararaman R; Ping Y
    J Chem Phys; 2017 Mar; 146(10):104109. PubMed ID: 28298107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.
    Ping Y; Goddard WA; Galli GA
    J Am Chem Soc; 2015 Apr; 137(16):5264-7. PubMed ID: 25867053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches.
    Heenen HH; Gauthier JA; Kristoffersen HH; Ludwig T; Chan K
    J Chem Phys; 2020 Apr; 152(14):144703. PubMed ID: 32295363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cation configuration and solvation on the band positions of zinc ferrite (100).
    Bauerfeind KCL; Bredow T
    Photochem Photobiol Sci; 2022 Jun; 21(6):1091-1100. PubMed ID: 35355230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Determination of Band Edge Alignments at the Water-CuInS
    Senftle TP; Carter EA
    Langmuir; 2017 Sep; 33(37):9479-9489. PubMed ID: 28544847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and optical properties of pristine, N- and S-doped water-covered TiO
    Kenmoe S; Lisovski O; Piskunov S; Zhukovskii YF; Spohr E
    J Chem Phys; 2019 Jan; 150(4):041714. PubMed ID: 30709322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint.
    Harb M; Sautet P; Nurlaela E; Raybaud P; Cavallo L; Domen K; Basset JM; Takanabe K
    Phys Chem Chem Phys; 2014 Oct; 16(38):20548-60. PubMed ID: 25148446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces.
    Eglitis RI; Rohlfing M
    J Phys Condens Matter; 2010 Oct; 22(41):415901. PubMed ID: 21386602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting.
    Zhang D; Yang M
    Phys Chem Chem Phys; 2013 Nov; 15(42):18523-9. PubMed ID: 24072357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrochemical interface in first-principles calculations.
    Schwarz K; Sundararaman R
    Surf Sci Rep; 2020 May; 75(2):. PubMed ID: 34194128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations.
    Sundararaman R; Letchworth-Weaver K; Schwarz KA
    J Chem Phys; 2018 Apr; 148(14):144105. PubMed ID: 29655358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes.
    Toroker MC; Kanan DK; Alidoust N; Isseroff LY; Liao P; Carter EA
    Phys Chem Chem Phys; 2011 Oct; 13(37):16644-54. PubMed ID: 21853210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.
    Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO
    Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways.
    Mathew K; Sundararaman R; Letchworth-Weaver K; Arias TA; Hennig RG
    J Chem Phys; 2014 Feb; 140(8):084106. PubMed ID: 24588147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.
    Ambrosio F; Miceli G; Pasquarello A
    J Chem Phys; 2015 Dec; 143(24):244508. PubMed ID: 26723693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water.
    Farnesi Camellone M; Marx D
    J Phys Chem Lett; 2013 Feb; 4(3):514-8. PubMed ID: 26281748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes.
    Tateyama Y; Blumberger J; Sprik M; Tavernelli I
    J Chem Phys; 2005 Jun; 122(23):234505. PubMed ID: 16008460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.