These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 26513540)
1. Heat and desiccation are the predominant factors affecting inactivation of Bacillus licheniformis and Bacillus thuringiensis spores during simulated composting. Stanford K; Harvey A; Barbieri R; Xu S; Reuter T; Amoako KK; Selinger LB; McAllister TA J Appl Microbiol; 2016 Jan; 120(1):90-8. PubMed ID: 26513540 [TBL] [Abstract][Full Text] [Related]
2. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus spores during livestock mortality composting. Stanford K; Reuter T; Gilroyed BH; McAllister TA J Appl Microbiol; 2015 Apr; 118(4):989-97. PubMed ID: 25580774 [TBL] [Abstract][Full Text] [Related]
3. Viability of Bacillus licheniformis and Bacillus thuringiensis spores as a model for predicting the fate of bacillus anthracis spores during composting of dead livestock. Reuter T; Alexander TW; McAllister TA Appl Environ Microbiol; 2011 Mar; 77(5):1588-92. PubMed ID: 21193674 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure. Xu S; Harvey A; Barbieri R; Reuter T; Stanford K; Amoako KK; Selinger LB; McAllister TA Front Microbiol; 2016; 7():806. PubMed ID: 27303388 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization. Amador Espejo GG; Hernández-Herrero MM; Juan B; Trujillo AJ Food Microbiol; 2014 Dec; 44():204-10. PubMed ID: 25084664 [TBL] [Abstract][Full Text] [Related]
6. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH. Baril E; Coroller L; Couvert O; Leguérinel I; Postollec F; Boulais C; Carlin F; Mafart P Food Microbiol; 2012 May; 30(1):29-36. PubMed ID: 22265280 [TBL] [Abstract][Full Text] [Related]
7. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam. Buhr TL; Young AA; Barnette HK; Minter ZA; Kennihan NL; Johnson CA; Bohmke MD; DePaola M; Cora-Laó M; Page MA J Appl Microbiol; 2015 Nov; 119(5):1263-77. PubMed ID: 26258399 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of killing of spores of Bacillus anthracis in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of Bacillus anthracis, Bacillus subtilis and Bacillus thuringiensis. Setlow B; Parish S; Zhang P; Li YQ; Neely WC; Setlow P J Appl Microbiol; 2014 Apr; 116(4):805-14. PubMed ID: 24344920 [TBL] [Abstract][Full Text] [Related]
9. Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release. Park S; Kim C; Lee D; Song DH; Cheon KC; Lee HS; Kim SJ; Kim JC; Lee SY Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258144 [TBL] [Abstract][Full Text] [Related]
11. Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate. Ahn J; Balasubramaniam VM J Food Prot; 2014 Jun; 77(6):948-54. PubMed ID: 24853517 [TBL] [Abstract][Full Text] [Related]
12. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis. Buhr TL; Young AA; Bensman M; Minter ZA; Kennihan NL; Johnson CA; Bohmke MD; Borgers-Klonkowski E; Osborn EB; Avila SD; Theys AM; Jackson PJ J Appl Microbiol; 2016 Apr; 120(4):1074-84. PubMed ID: 26786717 [TBL] [Abstract][Full Text] [Related]
13. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms. Bishop AH J Appl Microbiol; 2014 Nov; 117(5):1274-82. PubMed ID: 25099131 [TBL] [Abstract][Full Text] [Related]
14. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w). Baril E; Coroller L; Couvert O; El Jabri M; Leguerinel I; Postollec F; Boulais C; Carlin F; Mafart P Food Microbiol; 2012 Oct; 32(1):79-86. PubMed ID: 22850377 [TBL] [Abstract][Full Text] [Related]
15. The effects of wet heat treatment on the structural and chemical components of Bacillus sporothermodurans spores. Tabit FT; Buys E Int J Food Microbiol; 2010 Jun; 140(2-3):207-13. PubMed ID: 20417981 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment. Scurrah KJ; Robertson RE; Craven HM; Pearce LE; Szabo EA J Appl Microbiol; 2006 Jul; 101(1):172-80. PubMed ID: 16834604 [TBL] [Abstract][Full Text] [Related]
17. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons. Mott TM; Shoe JL; Hunter M; Woodson AM; Fritts KA; Klimko CP; Quirk AV; Welkos SL; Cote CK J Appl Microbiol; 2017 May; 122(5):1219-1232. PubMed ID: 28191745 [TBL] [Abstract][Full Text] [Related]
18. Control of Bacillus licheniformis spores isolated from dairy materials in yogurt production. Tanaka T; Ito A; Kamikado H Biocontrol Sci; 2012; 17(4):169-73. PubMed ID: 23269218 [TBL] [Abstract][Full Text] [Related]
19. Impact of shoulders on the calculus of heat sterilization treatments with different bacterial spores. Ruiz V; Alonso R; Salvador M; Condón S; Condón-Abanto S Food Microbiol; 2021 Apr; 94():103663. PubMed ID: 33279088 [TBL] [Abstract][Full Text] [Related]
20. The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history. Baril E; Coroller L; Postollec F; Leguerinel I; Boulais C; Carlin F; Mafart P Int J Food Microbiol; 2011 Mar; 146(1):57-62. PubMed ID: 21354646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]