BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 26513561)

  • 1. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods.
    Kianpour M; Mohammadinasab E; Isfahani TM
    Curr Comput Aided Drug Des; 2021; 17(1):38-56. PubMed ID: 31880265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling.
    Devillers J
    SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.).
    Hamadache M; Benkortbi O; Hanini S; Amrane A
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):896-907. PubMed ID: 29067614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-toxicity modeling of pesticides to honey bees.
    Devillers J; Pham-Delègue MH; Decourtye A; Budzinski H; Cluzeau S; Maurin G
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):641-8. PubMed ID: 12570042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Norm Index-Based QSAR Model for Acute Toxicity of Pesticides Toward Rainbow Trout.
    Jia Q; Liu T; Yan F; Wang Q
    Environ Toxicol Chem; 2020 Feb; 39(2):352-358. PubMed ID: 31634980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.
    Hisaki T; Aiba Née Kaneko M; Yamaguchi M; Sasa H; Kouzuki H
    J Toxicol Sci; 2015 Apr; 40(2):163-80. PubMed ID: 25786522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR and Classification Study on Prediction of Acute Oral Toxicity of
    Fan T; Sun G; Zhao L; Cui X; Zhong R
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30282923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach.
    Burden N; Maynard SK; Weltje L; Wheeler JR
    Regul Toxicol Pharmacol; 2016 Oct; 80():241-6. PubMed ID: 27235557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss.
    Devillers J; Flatin J
    SAR QSAR Environ Res; 2000; 11(1):25-43. PubMed ID: 10768404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general QSAR model for predicting the acute toxicity of pesticides to Lepomis macrochirus.
    Devillers J
    SAR QSAR Environ Res; 2001 Feb; 11(5-6):397-417. PubMed ID: 11328712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of human acute toxicity from physicochemical properties and non-vertebrate acute toxicity of the 38 organic chemicals of the MEIC priority list by PLS regression and neural network.
    Calleja MC; Geladi P; Persoone G
    Food Chem Toxicol; 1994 Oct; 32(10):923-41. PubMed ID: 7959448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
    Venko K; Drgan V; Novič M
    SAR QSAR Environ Res; 2018 Sep; 29(9):743-754. PubMed ID: 30220217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of fathead minnow acute toxicity of organic compounds from molecular structure.
    Eldred DV; Weikel CL; Jurs PC; Kaiser KL
    Chem Res Toxicol; 1999 Jul; 12(7):670-8. PubMed ID: 10409408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.