These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 26513595)

  • 1. E-pharmacophore filtering and molecular dynamics simulation studies in the discovery of potent drug-like molecules for chronic kidney disease.
    Nagamani S; Muthusamy K; Marshal JJ
    J Biomol Struct Dyn; 2016 Oct; 34(10):2233-2250. PubMed ID: 26513595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical insight to understand the molecular mechanism of dual target ligand CTA-018 in the chronic kidney disease pathogenesis.
    Nagamani S; Muthusamy K
    PLoS One; 2018; 13(10):e0203194. PubMed ID: 30286109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput virtual screening and E-pharmacophore filtering in the discovery of new BACE-1 inhibitors.
    Muthusamy K; Singh KhD; Chinnasamy S; Nagamani S; Krishnasamy G; Thiyagarajan C; Premkumar P; Anusuyadevi M
    Interdiscip Sci; 2013 Jun; 5(2):119-26. PubMed ID: 23740393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E-Pharmacophore mapping and docking studies on Vitamin D receptor (VDR).
    Nagamani S; Kesavan C; Muthusamy K
    Bioinformation; 2012; 8(15):705-10. PubMed ID: 23055614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification and screening of CYP24A1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis.
    Jayaraj JM; Krishnasamy G; Lee JK; Muthusamy K
    J Biomol Struct Dyn; 2019 Apr; 37(7):1700-1714. PubMed ID: 29658431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional insights on vitamin D receptor and CYP24A1 deleterious single nucleotide polymorphisms: A computational and pharmacogenomics perpetual approach.
    Jayaraj JM; Kuriakose BB; Alhazmi AH; Muthusamy K
    Cell Biochem Funct; 2021 Oct; 39(7):874-885. PubMed ID: 34231237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone Metastases of Diverse Primary Origin Frequently Express the VDR (Vitamin D Receptor) and CYP24A1.
    Seiler J; Ebert R; Rudert M; Herrmann M; Leich E; Weißenberger M; Horas K
    J Clin Med; 2022 Nov; 11(21):. PubMed ID: 36362766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights on vitamin D receptor and screening of new potent agonist molecules: structure and ligand-based approach.
    Jayaraj JM; Reteti E; Kesavan C; Muthusamy K
    J Biomol Struct Dyn; 2021 Jul; 39(11):4148-4159. PubMed ID: 32462983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VDR and CYP24A1 Expression Analysis in Iranian Relapsing-Remitting Multiple Sclerosis Patients.
    Sadeghi H; Taheri M; Sajadi E; Movafagh A; Arsang Jang S; Sayad A
    Cell J; 2017 Oct; 19(3):352-360. PubMed ID: 28836398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and ligand-selective interactions of vitamin D receptor with retinoid X receptor and cofactors in living cells.
    Choi M; Yamada S; Makishima M
    Mol Pharmacol; 2011 Dec; 80(6):1147-55. PubMed ID: 21917910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypergravity modulates vitamin D receptor target gene mRNA expression in mice.
    Ishizawa M; Iwasaki K; Kato S; Makishima M
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E728-34. PubMed ID: 19549793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular disease in chronic kidney failure: the role of VDR activators.
    Wu-Wong JR; Tian J; Nakane M; Ma J; Fey TA; Kroeger P; Fryer RM; Reinhart GA
    Curr Opin Investig Drugs; 2006 Mar; 7(3):206-13. PubMed ID: 16555680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening.
    Sindhu T; Srinivasan P
    Mol Biosyst; 2015 May; 11(5):1305-18. PubMed ID: 25787676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of secondary hyperparathyroidism by vitamin D receptor agonists in chronic kidney disease.
    Sprague SM; Coyne D
    Clin J Am Soc Nephrol; 2010 Mar; 5(3):512-8. PubMed ID: 20133492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple pharmacophore models combined with molecular docking: a reliable way for efficiently identifying novel PDE4 inhibitors with high structural diversity.
    Chen Z; Tian G; Wang Z; Jiang H; Shen J; Zhu W
    J Chem Inf Model; 2010 Apr; 50(4):615-25. PubMed ID: 20353193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vitamin D analogs on the expression of plasminogen activator inhibitor-1 in human vascular cells.
    Wu-Wong JR; Nakane M; Ma J
    Thromb Res; 2006; 118(6):709-14. PubMed ID: 16371233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors.
    Vyas VK; Ghate M; Goel A
    J Mol Graph Model; 2013 May; 42():17-25. PubMed ID: 23507201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-based pharmacophore modelling and screening of DNA minor groove binders targeting Staphylococcus aureus.
    Vijayalakshmi P; Selvaraj C; Shafreen RM; Singh SK; Pandian SK; Daisy P
    J Mol Recognit; 2014 Jul; 27(7):429-37. PubMed ID: 24895275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Docking Study Based on Pharmacophore Modeling for Novel PhosphodiesteraseIV Inhibitors.
    Çifci G; Aviyente V; Akten ED
    Mol Inform; 2012 Jul; 31(6-7):459-71. PubMed ID: 27477465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.