These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26513800)

  • 1. Photoplethysmography-Based Method for Automatic Detection of Premature Ventricular Contractions.
    Solosenko A; Petrenas A; Marozas V
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):662-9. PubMed ID: 26513800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate turbulence analysis based on photoplethysmography.
    Gil E; Laguna P; Martínez JP; Barquero-Pérez Ó; García-Alberola A; Sörnmo L
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3149-55. PubMed ID: 23797215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of premature ventricular contractions using the RR-interval signal: a simple algorithm for mobile devices.
    Cuesta P; Lado MJ; Vila XA; Alonso R
    Technol Health Care; 2014; 22(4):651-6. PubMed ID: 24898863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features.
    Inan OT; Giovangrandi L; Kovacs GT
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2507-15. PubMed ID: 17153208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding features for real-time premature ventricular contraction detection using a fuzzy neural network system.
    Lim JS
    IEEE Trans Neural Netw; 2009 Mar; 20(3):522-7. PubMed ID: 19179246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PULSE-SMART: Pulse-Based Arrhythmia Discrimination Using a Novel Smartphone Application.
    McMANUS DD; Chong JW; Soni A; Saczynski JS; Esa N; Napolitano C; Darling CE; Boyer E; Rosen RK; Floyd KC; Chon KH
    J Cardiovasc Electrophysiol; 2016 Jan; 27(1):51-7. PubMed ID: 26391728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the photoplethysmogram during atrial fibrillation.
    Sološenko A; Petrėnas A; Marozas V; Sörnmo L
    Comput Biol Med; 2017 Feb; 81():130-138. PubMed ID: 28061368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia.
    Han D; Bashar SK; Lázaro J; Mohagheghian F; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Scott J; Whitcomb C; Fitzgibbons TP; McManus DD; Chon KH
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PVC Detection Using a Convolutional Autoencoder and Random Forest Classifier.
    Gordon M; Williams C
    Pac Symp Biocomput; 2019; 24():42-53. PubMed ID: 30864309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions.
    Bashar SK; Han D; Zieneddin F; Ding E; Fitzgibbons TP; Walkey AJ; McManus DD; Javidi B; Chon KH
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):448-460. PubMed ID: 32746035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of respiratory arousals using photoplethysmography (PPG) signal in sleep apnea patients.
    Karmakar C; Khandoker A; Penzel T; Schöbel C; Palaniswami M
    IEEE J Biomed Health Inform; 2014 May; 18(3):1065-73. PubMed ID: 24108482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic diagnosis of premature ventricular contraction based on Lyapunov exponents and LVQ neural network.
    Liu X; Du H; Wang G; Zhou S; Zhang H
    Comput Methods Programs Biomed; 2015 Oct; 122(1):47-55. PubMed ID: 26198132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PVC arrhythmia classification based on fractional order system modeling.
    Assadi I; Charef A; Bensouici T
    Biomed Tech (Berl); 2021 Aug; 66(4):363-373. PubMed ID: 33606930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premature Atrial and Ventricular Contraction Detection using Photoplethysmographic Data from a Smartwatch.
    Han D; Bashar SK; Mohagheghian F; Ding E; Whitcomb C; McManus DD; Chon KH
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33028000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive delineator for photoplethysmography waveforms.
    Soundararajan M; Arunagiri S; Alagala S
    Biomed Tech (Berl); 2016 Dec; 61(6):645-655. PubMed ID: 27107830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive template matching of photoplethysmogram pulses to detect motion artefact.
    Lim PK; Ng SC; Lovell NH; Yu YP; Tan MP; McCombie D; Lim E; Redmond SJ
    Physiol Meas; 2018 Oct; 39(10):105005. PubMed ID: 30183675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising.
    Lee J; Sun S; Yang SM; Sohn JJ; Park J; Lee S; Kim HC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2375-2385. PubMed ID: 30530376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Premature beats detection based on a novel convolutional neural network.
    Yang J; Cai W; Wang M
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34167103
    [No Abstract]   [Full Text] [Related]  

  • 19. Bayesian Classification Models for Premature Ventricular Contraction Detection on ECG Traces.
    Casas MM; Avitia RL; Gonzalez-Navarro FF; Cardenas-Haro JA; Reyna MA
    J Healthc Eng; 2018; 2018():2694768. PubMed ID: 29861881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms.
    Yu C; Liu Z; McKenna T; Reisner AT; Reifman J
    J Am Med Inform Assoc; 2006; 13(3):309-20. PubMed ID: 16501184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.