BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2651411)

  • 21. Reversible inactivation of isocitrate dehydrogenase in Escherichia coli.
    Holms WH; Nimmo HG
    Biochem Soc Trans; 1982 Oct; 10(5):319-20. PubMed ID: 6754502
    [No Abstract]   [Full Text] [Related]  

  • 22. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition.
    Walsh K; Koshland DE
    J Biol Chem; 1985 Jul; 260(14):8430-7. PubMed ID: 2861202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment.
    LaPorte DC; Thorsness PE; Koshland DE
    J Biol Chem; 1985 Sep; 260(19):10563-8. PubMed ID: 3897222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lability of isocitrate dehydrogenase in Escherichia coli.
    Bennett PM; Holms WH
    J Gen Microbiol; 1969 Nov; 58(3):iv. PubMed ID: 4904096
    [No Abstract]   [Full Text] [Related]  

  • 26. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacillus subtilis isocitrate dehydrogenase. A substrate analogue for Escherichia coli isocitrate dehydrogenase kinase/phosphatase.
    Singh SK; Miller SP; Dean A; Banaszak LJ; LaPorte DC
    J Biol Chem; 2002 Mar; 277(9):7567-73. PubMed ID: 11751849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunochemical localization of NADP-specific isocitrate dehydrogenase in Escherichia coli.
    Swafford JR; Malloy PJ; Reeves HC
    Science; 1983 Jul; 221(4607):295-6. PubMed ID: 6344223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses.
    Phue JN; Noronha SB; Hattacharyya R; Wolfe AJ; Shiloach J
    Biotechnol Bioeng; 2005 Jun; 90(7):805-20. PubMed ID: 15806547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli.
    Dexter JP; Gunawardena J
    J Biol Chem; 2013 Feb; 288(8):5770-8. PubMed ID: 23192354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robustness in glyoxylate bypass regulation.
    Shinar G; Rabinowitz JD; Alon U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000297. PubMed ID: 19266029
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the phosphorylation of Escherichia coli isocitrate dehydrogenase. Recognition of the enzyme by isocitrate dehydrogenase kinase/phosphatase and effects of phosphorylation on its structure and properties.
    McKee JS; Hlodan R; Nimmo HG
    Biochimie; 1989; 71(9-10):1059-64. PubMed ID: 2557094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP-independent phosphorylation of Escherichia coli isocitrate dehydrogenase.
    Malloy PJ; Reeves HC
    FEBS Lett; 1983 Jan; 151(1):59-62. PubMed ID: 6297989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.
    Hurley JH; Thorsness PE; Ramalingam V; Helmers NH; Koshland DE; Stroud RM
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8635-9. PubMed ID: 2682654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase.
    Nimmo GA; Nimmo HG
    Eur J Biochem; 1984 Jun; 141(2):409-14. PubMed ID: 6329757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The selective cause of an ancient adaptation.
    Zhu G; Golding GB; Dean AM
    Science; 2005 Feb; 307(5713):1279-82. PubMed ID: 15653464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control.
    LaPorte DC; Walsh K; Koshland DE
    J Biol Chem; 1984 Nov; 259(22):14068-75. PubMed ID: 6389540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109).
    Phue JN; Shiloach J
    J Biotechnol; 2004 Apr; 109(1-2):21-30. PubMed ID: 15063611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity.
    Stueland CS; Eck KR; Stieglbauer KT; LaPorte DC
    J Biol Chem; 1987 Nov; 262(33):16095-9. PubMed ID: 2824478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regulation of NADP-linked isocitrate dehydrogenase in Aspergillus nidulans.
    Kelly JM; Hynes MJ
    J Gen Microbiol; 1982 Jan; 128(1):23-8. PubMed ID: 6123545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.