These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 26514345)
1. Metal release from stainless steel in biological environments: A review. Hedberg YS; Odnevall Wallinder I Biointerphases; 2015 Mar; 11(1):018901. PubMed ID: 26514345 [TBL] [Abstract][Full Text] [Related]
2. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Hedberg Y; Midander K; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):456-68. PubMed ID: 20821707 [TBL] [Abstract][Full Text] [Related]
3. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel. Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706 [TBL] [Abstract][Full Text] [Related]
4. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media. Hedberg Y; Karlsson ME; Blomberg E; Odnevall Wallinder I; Hedberg J Colloids Surf B Biointerfaces; 2014 Oct; 122():216-222. PubMed ID: 25048358 [TBL] [Abstract][Full Text] [Related]
5. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys. Hedberg Y; Mazinanian N; Odnevall Wallinder I Environ Sci Process Impacts; 2013 Feb; 15(2):381-92. PubMed ID: 25208703 [TBL] [Abstract][Full Text] [Related]
6. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media. Herting G; Wallinder IO; Leygraf C J Environ Monit; 2008 Sep; 10(9):1084-91. PubMed ID: 18728902 [TBL] [Abstract][Full Text] [Related]
7. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release. Cui Y; Liu S; Smith K; Hu H; Tang F; Li Y; Yu K J Environ Sci (China); 2016 Oct; 48():79-91. PubMed ID: 27745675 [TBL] [Abstract][Full Text] [Related]
8. Adsorption and protein-induced metal release from chromium metal and stainless steel. Lundin M; Hedberg Y; Jiang T; Herting G; Wang X; Thormann E; Blomberg E; Wallinder IO J Colloid Interface Sci; 2012 Jan; 366(1):155-164. PubMed ID: 22014396 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of metals used in implants. Gotman I J Endourol; 1997 Dec; 11(6):383-9. PubMed ID: 9440845 [TBL] [Abstract][Full Text] [Related]
10. Microbial corrosion of stainless steel. Ibars JR; Moreno DA; Ranninger C Microbiologia; 1992 Nov; 8(2):63-75. PubMed ID: 1492953 [TBL] [Abstract][Full Text] [Related]
11. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Kim H; Johnson JW Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183 [TBL] [Abstract][Full Text] [Related]
12. Corrosion and surface modification on biocompatible metals: A review. Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004 [TBL] [Abstract][Full Text] [Related]
13. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
14. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Hedberg YS; Killian MS; Blomberg E; Virtanen S; Schmuki P; Odnevall Wallinder I Langmuir; 2012 Nov; 28(47):16306-17. PubMed ID: 23116183 [TBL] [Abstract][Full Text] [Related]
15. Survey of six metal contaminants and impurities and eleven metals and alloy components released from stainless-steel sheets on the Chinese market. Qiu K; Yang D; Zhu X; Sui H; Wu G Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Dec; 38(12):2091-2101. PubMed ID: 34415827 [TBL] [Abstract][Full Text] [Related]
16. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H Xu W; Yu F; Yang L; Zhang B; Hou B; Li Y Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():11-19. PubMed ID: 30184732 [TBL] [Abstract][Full Text] [Related]
17. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel]. Liang C; Guo L; Chen W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118 [TBL] [Abstract][Full Text] [Related]
18. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. Kocijan A; Milosev I; Pihlar B J Mater Sci Mater Med; 2003 Jan; 14(1):69-77. PubMed ID: 15348541 [TBL] [Abstract][Full Text] [Related]
19. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study. Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173 [TBL] [Abstract][Full Text] [Related]
20. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances. Shin JS; Oh KT; Hwang CJ Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]