These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 2651438)

  • 1. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA.
    Gnirke A; Geigenmüller U; Rheinberger HJ; Nierhaus LH
    J Biol Chem; 1989 May; 264(13):7291-301. PubMed ID: 2651438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The function of the translating ribosome: allosteric three-site model of elongation.
    Rheinberger HJ
    Biochimie; 1991; 73(7-8):1067-88. PubMed ID: 1742351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
    Wurmbach P; Nierhaus KH
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric interactions between the ribosomal transfer RNA-binding sites A and E.
    Rheinberger HJ; Nierhaus KH
    J Biol Chem; 1986 Jul; 261(20):9133-9. PubMed ID: 2424904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli.
    Semenkov YP; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12183-8. PubMed ID: 8901554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codon-anticodon interaction at the ribosomal E site.
    Rheinberger HJ; Sternbach H; Nierhaus KH
    J Biol Chem; 1986 Jul; 261(20):9140-3. PubMed ID: 2424905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destabilization of codon-anticodon interaction in the ribosomal exit site.
    Lill R; Wintermeyer W
    J Mol Biol; 1987 Jul; 196(1):137-48. PubMed ID: 2443714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The allosteric three-site model for the ribosomal elongation cycle: features and future.
    Nierhaus KH
    Biochemistry; 1990 May; 29(21):4997-5008. PubMed ID: 2198935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs.
    Holschuh K; Gassen HG
    J Biol Chem; 1982 Feb; 257(4):1987-92. PubMed ID: 7035457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation.
    Robertson JM; Wintermeyer W
    J Mol Biol; 1987 Aug; 196(3):525-40. PubMed ID: 2824784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site.
    Geigenmüller U; Nierhaus KH
    EMBO J; 1990 Dec; 9(13):4527-33. PubMed ID: 2265616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomal tRNA binding sites: three-site models of translation.
    Burkhardt N; Jünemann R; Spahn CM; Nierhaus KH
    Crit Rev Biochem Mol Biol; 1998; 33(2):95-149. PubMed ID: 9598294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA binding sites on the subunits of Escherichia coli ribosomes.
    Gnirke A; Nierhaus KH
    J Biol Chem; 1986 Nov; 261(31):14506-14. PubMed ID: 3533922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing an alternative model for the ribosomal peptide elongation cycle.
    Rheinberger HJ; Nierhaus KH
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4213-7. PubMed ID: 6348767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis.
    Lake JA
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1903-7. PubMed ID: 266713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants.
    Nierhaus KH
    Mol Microbiol; 1993 Aug; 9(4):661-9. PubMed ID: 7694034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of translocation in ribosomal accuracy. Translocation rates for cognate and noncognate aminoacyl- and peptidyl-tRNAs on Escherichia coli ribosomes.
    Gast FU; Peters F; Pingoud A
    J Biol Chem; 1987 Sep; 262(25):11920-6. PubMed ID: 3305498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of the ribosomal E-site: a mutagenesis study.
    Sergiev PV; Lesnyak DV; Kiparisov SV; Burakovsky DE; Leonov AA; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2005; 33(18):6048-56. PubMed ID: 16243787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of translocation: effect of cognate transfer ribonucleic acids on the binding of AUGUn to 70S ribosomes.
    Holschuh K; Bonin J; Gassen HG
    Biochemistry; 1980 Dec; 19(25):5857-64. PubMed ID: 7006693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomes.
    Bergemann K; Nierhaus KH
    J Biol Chem; 1983 Dec; 258(24):15105-13. PubMed ID: 6361027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.