These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26514667)

  • 1. Optical forces in nanorod metamaterial.
    Bogdanov AA; Shalin AS; Ginzburg P
    Sci Rep; 2015 Oct; 5():15846. PubMed ID: 26514667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-assisted optical trapping and anti-trapping.
    Ivinskaya A; Petrov MI; Bogdanov AA; Shishkin I; Ginzburg P; Shalin AS
    Light Sci Appl; 2017 May; 6(5):e16258. PubMed ID: 30167251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi 3-dimensional optical trapping by two counter-propagating beams in nano-fiber.
    Zhao L; Li Y; Qi J; Xu J; Sun Q
    Opt Express; 2010 Mar; 18(6):5724-9. PubMed ID: 20389588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
    Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV
    Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of lateral Casimir force on a rotating particle near hyperbolic metamaterial.
    Wang TB; Zhou Y; Mu HQ; Shehzad K; Zhang DJ; Liu WX; Yu TB; Liao QH
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35235909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling electromagnetic scattering with wire metamaterial resonators.
    Filonov DS; Shalin AS; Iorsh I; Belov PA; Ginzburg P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):1910-1916. PubMed ID: 27828093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens.
    Markovich H; Shishkin II; Hendler N; Ginzburg P
    Nano Lett; 2018 Aug; 18(8):5024-5029. PubMed ID: 29949377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials.
    He Y; He S; Gao J; Yang X
    Opt Express; 2012 Sep; 20(20):22372-82. PubMed ID: 23037385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of the properties of optical vortex array laser tweezers.
    Kuo CF; Chu SC
    Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic hyperbolic optical metamaterials.
    Kruk SS; Wong ZJ; Pshenay-Severin E; O'Brien K; Neshev DN; Kivshar YS; Zhang X
    Nat Commun; 2016 Apr; 7():11329. PubMed ID: 27072604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver.
    Liu XX; Massey JW; Wu MF; Kim KT; Shore RA; Yılmaz AE; Alù A
    Opt Express; 2013 Sep; 21(19):21714-27. PubMed ID: 24104066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Pulling Forces Enabled by Hyperbolic Metamaterials.
    Jin R; Xu Y; Dong ZG; Liu Y
    Nano Lett; 2021 Dec; 21(24):10431-10437. PubMed ID: 34898220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser.
    Kalantarifard F; Elahi P; Makey G; Maragò OM; Ilday FÖ; Volpe G
    Nat Commun; 2019 Jun; 10(1):2683. PubMed ID: 31213600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxiliary Optomechanical Tools for 3D Cell Manipulation.
    Shishkin I; Markovich H; Roichman Y; Ginzburg P
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31941107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.