BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26514684)

  • 1. A general method for cupping artifact correction of cone-beam breast computed tomography images.
    Qu X; Lai CJ; Zhong Y; Yi Y; Shaw CC
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1233-46. PubMed ID: 26514684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography.
    Altunbas MC; Shaw CC; Chen L; Lai C; Liu X; Han T; Wang T
    Med Phys; 2007 Jul; 34(7):3109-18. PubMed ID: 17822018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A level set method for cupping artifact correction in cone-beam CT.
    Xie S; Li C; Li H; Ge Q
    Med Phys; 2015 Aug; 42(8):4888-95. PubMed ID: 26233215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: correction of cupping artifacts and conversion of CT numbers to electron density.
    Petit SF; van Elmpt WJ; Nijsten SM; Lambin P; Dekker AL
    Med Phys; 2008 Mar; 35(3):849-65. PubMed ID: 18404922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre- and post-contrast versus post-contrast cone-beam breast CT: can we reduce radiation exposure while maintaining diagnostic accuracy?
    Uhlig J; Fischer U; Biggemann L; Lotz J; Wienbeck S
    Eur Radiol; 2019 Jun; 29(6):3141-3148. PubMed ID: 30488110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Library based x-ray scatter correction for dedicated cone beam breast CT.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2016 Aug; 43(8):4529. PubMed ID: 27487870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy minimization method for the correction of cupping artifacts in cone-beam CT.
    Xie S; Zhuang W; Li H
    J Appl Clin Med Phys; 2016 Jul; 17(4):307-319. PubMed ID: 27455478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TU-E-217BCD-08: Extraction and Insertion of Tumor Masses in Cone Beam Breast CT Images.
    Lai C; Shen Y; Zhong Y; Whitman G; Yang W; Wang T; Shaw C
    Med Phys; 2012 Jun; 39(6Part24):3915. PubMed ID: 28518685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach.
    Ghazi P; Hernandez AM; Abbey C; Yang K; Boone JM
    Med Phys; 2019 Aug; 46(8):3414-3430. PubMed ID: 31102462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dedicated cone-beam breast CT using laterally-shifted detector geometry: Quantitative analysis of feasibility for clinical translation.
    Vedantham S; Tseng HW; Konate S; Shi L; Karellas A
    J Xray Sci Technol; 2020; 28(3):405-426. PubMed ID: 32333575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of propagation-based CT using synchrotron radiation and conventional cone-beam CT for breast imaging.
    Tavakoli Taba S; Baran P; Nesterets YI; Pacile S; Wienbeck S; Dullin C; Pavlov K; Maksimenko A; Lockie D; Mayo SC; Quiney HM; Dreossi D; Arfelli F; Tromba G; Lewis S; Gureyev TE; Brennan PC
    Eur Radiol; 2020 May; 30(5):2740-2750. PubMed ID: 31974689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artifacts Caused by Breast Tissue Markers in a Dedicated Cone-beam Breast CT in Comparison to Full-field Digital Mammography.
    Wienbeck S; Nowak C; Zapf A; Stamm G; Unterberg-Buchwald C; Lotz J; Fischer U
    Acad Radiol; 2017 Jul; 24(7):908-915. PubMed ID: 28130048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images.
    Yang X; Wu S; Sechopoulos I; Fei B
    Med Phys; 2012 Oct; 39(10):6397-406. PubMed ID: 23039675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.
    Min J; Pua R; Kim I; Han B; Cho S
    Med Phys; 2015 Nov; 42(11):6625-40. PubMed ID: 26520753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray scatter correction for dedicated cone beam breast CT using a forward-projection model.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2017 Jun; 44(6):2312-2320. PubMed ID: 28295375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy.
    Yang K; Burkett G; Boone JM
    Phys Med Biol; 2014 Nov; 59(21):6487-505. PubMed ID: 25310586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone Beam Breast CT noise reduction using 3D adaptive Gaussian filtering.
    Zhang X; Ning R; Yang D
    J Xray Sci Technol; 2009; 17(4):319-33. PubMed ID: 19923688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.