BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26514684)

  • 21. Scatter correction for clinical cone beam CT breast imaging based on breast phantom studies.
    Cai W; Ning R; Conover D
    J Xray Sci Technol; 2011; 19(1):91-109. PubMed ID: 21422591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experiment-based scatter correction for cone-beam computed tomography using the statistical method.
    Aootaphao S; Thongvigitmanee SS; Rajruangrabin J; Junhunee P; Thajchayapong P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5087-90. PubMed ID: 24110879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiation doses in cone-beam breast computed tomography: a Monte Carlo simulation study.
    Yi Y; Lai CJ; Han T; Zhong Y; Shen Y; Liu X; Ge S; You Z; Wang T; Shaw CC
    Med Phys; 2011 Feb; 38(2):589-97. PubMed ID: 21452696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image-domain shading correction for cone-beam CT without prior patient information.
    Fan Q; Lu B; Park JC; Niu T; Li JG; Liu C; Zhu L
    J Appl Clin Med Phys; 2015 Nov; 16(6):65-75. PubMed ID: 26699555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Empirical beam hardening correction (EBHC) for CT.
    Kyriakou Y; Meyer E; Prell D; Kachelriess M
    Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrast-enhanced cone-beam breast-CT (CBBCT): clinical performance compared to mammography and MRI.
    Wienbeck S; Fischer U; Luftner-Nagel S; Lotz J; Uhlig J
    Eur Radiol; 2018 Sep; 28(9):3731-3741. PubMed ID: 29594402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of ring artifact removal methods using flat panel detector based CT images.
    Anas EM; Kim JG; Lee SY; Hasan K
    Biomed Eng Online; 2011 Aug; 10():72. PubMed ID: 21846411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal Artifact Reduction in Cone-Beam Computed Tomography for Head and Neck Radiotherapy.
    Korpics M; Johnson P; Patel R; Surucu M; Choi M; Emami B; Roeske JC
    Technol Cancer Res Treat; 2016 Dec; 15(6):NP88-NP94. PubMed ID: 26614780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and correction of cupping effect artefacts in cone beam CT.
    Hunter AK; McDavid WD
    Dentomaxillofac Radiol; 2012 Mar; 41(3):217-23. PubMed ID: 22378754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.
    Yang CC
    PLoS One; 2016; 11(3):e0149904. PubMed ID: 26950435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beam Hardening Correction Using Cone Beam Consistency Conditions.
    Abdurahman S; Frysch R; Bismark R; Melnik S; Beuing O; Rose G
    IEEE Trans Med Imaging; 2018 Oct; 37(10):2266-2277. PubMed ID: 29993714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cone-beam CT for breast imaging: Radiation dose, breast coverage, and image quality.
    O'Connell A; Conover DL; Zhang Y; Seifert P; Logan-Young W; Lin CF; Sahler L; Ning R
    AJR Am J Roentgenol; 2010 Aug; 195(2):496-509. PubMed ID: 20651210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contextual loss based artifact removal method on CBCT image.
    Xie S; Liang Y; Yang T; Song Z
    J Appl Clin Med Phys; 2020 Dec; 21(12):166-177. PubMed ID: 33136307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT.
    Siewerdsen JH; Daly MJ; Bakhtiar B; Moseley DJ; Richard S; Keller H; Jaffray DA
    Med Phys; 2006 Jan; 33(1):187-97. PubMed ID: 16485425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of cone-beam breast-CT for breast cancer detection relative to breast density.
    Wienbeck S; Uhlig J; Luftner-Nagel S; Zapf A; Surov A; von Fintel E; Stahnke V; Lotz J; Fischer U
    Eur Radiol; 2017 Dec; 27(12):5185-5195. PubMed ID: 28677053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of clinical studies and first clinical experiences with a commercially available cone-beam breast CT in Europe.
    Wienbeck S; Lotz J; Fischer U
    Clin Imaging; 2017; 42():50-59. PubMed ID: 27875762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Empirical beam hardening and ring artifact correction for x-ray grating interferometry (EBHC-GI).
    Nelson BJ; Leng S; Shanblatt ER; McCollough CH; Koenig T
    Med Phys; 2021 Mar; 48(3):1327-1340. PubMed ID: 33338261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-fidelity artifact correction for cone-beam CT imaging of the brain.
    Sisniega A; Zbijewski W; Xu J; Dang H; Stayman JW; Yorkston J; Aygun N; Koliatsos V; Siewerdsen JH
    Phys Med Biol; 2015 Feb; 60(4):1415-39. PubMed ID: 25611041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dedicated cone-beam breast CT: Data acquisition strategies based on projection angle-dependent normalized glandular dose coefficients.
    Tseng HW; Karellas A; Vedantham S
    Med Phys; 2023 Mar; 50(3):1406-1417. PubMed ID: 36427332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A weighted rebinned backprojection-filtration algorithm from partially beam-blocked data for a single-scan cone-beam CT with hybrid type scatter correction.
    Min J; Pua R; Kim C; Park M; Lee J; Ye SJ; Cho S
    Med Phys; 2019 Mar; 46(3):1182-1197. PubMed ID: 30592313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.