These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26515093)

  • 1. Training refines brain representations for multitasking.
    Duncan J; Mitchell DJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14127-8. PubMed ID: 26515093
    [No Abstract]   [Full Text] [Related]  

  • 2. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system.
    Garner KG; Dux PE
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14372-7. PubMed ID: 26460014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of the fronto-parietal brain network in oculomotor sequence learning using fMRI.
    Gonzalez CC; Billington J; Burke MR
    Neuropsychologia; 2016 Jul; 87():1-11. PubMed ID: 27157884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.
    Kizilirmak JM; Rösler F; Bien S; Khader PH
    Brain Res; 2015 Jul; 1614():14-27. PubMed ID: 25892601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.
    Barnes JJ; Nobre AC; Woolrich MW; Baker K; Astle DE
    J Neurosci; 2016 Aug; 36(34):9001-11. PubMed ID: 27559180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly and use of new task rules in fronto-parietal cortex.
    Dumontheil I; Thompson R; Duncan J
    J Cogn Neurosci; 2011 Jan; 23(1):168-82. PubMed ID: 20146600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating when and what information in the left parietal lobe allows language rule generalization.
    Orpella J; Ripollés P; Ruzzoli M; Amengual JL; Callejas A; Martinez-Alvarez A; Soto-Faraco S; de Diego-Balaguer R
    PLoS Biol; 2020 Nov; 18(11):e3000895. PubMed ID: 33137084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks.
    Thompson TW; Waskom ML; Gabrieli JD
    J Cogn Neurosci; 2016 Apr; 28(4):575-88. PubMed ID: 26741799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariance detection in the brain: revealed in a stepwise category induction task.
    Cai X; Li F; Wang J; Li H
    Brain Res; 2014 Aug; 1575():55-65. PubMed ID: 24887644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference.
    Morton NW; Schlichting ML; Preston AR
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29338-29345. PubMed ID: 33229532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of central mechanism of cognitive training on cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study.
    Lin ZC; Tao J; Gao YL; Yin DZ; Chen AZ; Chen LD
    J Int Med Res; 2014 Jun; 42(3):659-68. PubMed ID: 24722262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking prototype and exemplar representations in the brain across learning.
    Bowman CR; Iwashita T; Zeithamova D
    Elife; 2020 Nov; 9():. PubMed ID: 33241999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional brain network reconfiguration during learning in a dynamic environment.
    Kao CH; Khambhati AN; Bassett DS; Nassar MR; McGuire JT; Gold JI; Kable JW
    Nat Commun; 2020 Apr; 11(1):1682. PubMed ID: 32245973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical and subcortical brain regions involved in rule-based category learning.
    Filoteo JV; Maddox WT; Simmons AN; Ing AD; Cagigas XE; Matthews S; Paulus MP
    Neuroreport; 2005 Feb; 16(2):111-5. PubMed ID: 15671857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High level of dexterity: differential contributions of frontal and parietal areas.
    Galléa C; de Graaf JB; Bonnard M; Pailhous J
    Neuroreport; 2005 Aug; 16(12):1271-4. PubMed ID: 16056123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parietal and frontal object areas underlie perception of object orientation in depth.
    Niimi R; Saneyoshi A; Abe R; Kaminaga T; Yokosawa K
    Neurosci Lett; 2011 May; 496(1):35-9. PubMed ID: 21470573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices.
    Yu Q; Shim WM
    Cereb Cortex; 2019 Jul; 29(7):3182-3192. PubMed ID: 30124789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.
    Frank SM; Reavis EA; Greenlee MW; Tse PU
    Cereb Cortex; 2016 Mar; 26(3):1211-1220. PubMed ID: 25576537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building the multitasking brain: An integrated perspective on functional brain activation during task-switching and dual-tasking.
    Ward N; Hussey EK; Cunningham EC; Paul EJ; McWilliams T; Kramer AF
    Neuropsychologia; 2019 Sep; 132():107149. PubMed ID: 31348930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.