These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 26515107)

  • 1. Structure and function of mitochondrial membrane protein complexes.
    Kühlbrandt W
    BMC Biol; 2015 Oct; 13():89. PubMed ID: 26515107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel.
    Bahri H; Buratto J; Rojo M; Dompierre JP; Salin B; Blancard C; Cuvellier S; Rose M; Ben Ammar Elgaaied A; Tetaud E; di Rago JP; Devin A; Duvezin-Caubet S
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(4):118942. PubMed ID: 33359711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory chain supercomplexes in the plant mitochondrial membrane.
    Dudkina NV; Heinemeyer J; Sunderhaus S; Boekema EJ; Braun HP
    Trends Plant Sci; 2006 May; 11(5):232-40. PubMed ID: 16616870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.
    Sun F; Zhou Q; Pang X; Xu Y; Rao Z
    Curr Opin Struct Biol; 2013 Aug; 23(4):526-38. PubMed ID: 23867107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria.
    Nesterov S; Chesnokov Y; Kamyshinsky R; Panteleeva A; Lyamzaev K; Vasilov R; Yaguzhinsky L
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria.
    Mühleip AW; Joos F; Wigge C; Frangakis AS; Kühlbrandt W; Davies KM
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8442-7. PubMed ID: 27402755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes.
    Wittig I; Schägger H
    Biochim Biophys Acta; 2009 Jun; 1787(6):672-80. PubMed ID: 19168025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria.
    Daum B; Walter A; Horst A; Osiewacz HD; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15301-6. PubMed ID: 24006361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Who and how in the regulation of mitochondrial cristae shape and function.
    Quintana-Cabrera R; Mehrotra A; Rigoni G; Soriano ME
    Biochem Biophys Res Commun; 2018 May; 500(1):94-101. PubMed ID: 28438601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial membrane assembly of TMEM70 protein.
    Kratochvílová H; Hejzlarová K; Vrbacký M; Mráček T; Karbanová V; Tesařová M; Gombitová A; Cmarko D; Wittig I; Zeman J; Houštěk J
    Mitochondrion; 2014 Mar; 15():1-9. PubMed ID: 24576557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows.
    Blum TB; Hahn A; Meier T; Davies KM; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4250-4255. PubMed ID: 30760595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular organization of the yeast F1Fo-ATP synthase.
    Thomas D; Bron P; Weimann T; Dautant A; Giraud MF; Paumard P; Salin B; Cavalier A; Velours J; Brèthes D
    Biol Cell; 2008 Oct; 100(10):591-601. PubMed ID: 18447829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ structure and rotary states of mitochondrial ATP synthase in whole
    Dietrich L; Agip AA; Kunz C; Schwarz A; Kühlbrandt W
    Science; 2024 Sep; 385(6713):1086-1090. PubMed ID: 39236170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial contact site and cristae organizing system.
    van der Laan M; Horvath SE; Pfanner N
    Curr Opin Cell Biol; 2016 Aug; 41():33-42. PubMed ID: 27062547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM of ATP synthases.
    Guo H; Rubinstein JL
    Curr Opin Struct Biol; 2018 Oct; 52():71-79. PubMed ID: 30240940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lethal Channel between the ATP Synthase Monomers.
    Nesci S
    Trends Biochem Sci; 2018 May; 43(5):311-313. PubMed ID: 29555114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure and function of mitochondrial F1F0-ATP synthases.
    Devenish RJ; Prescott M; Rodgers AJ
    Int Rev Cell Mol Biol; 2008; 267():1-58. PubMed ID: 18544496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae.
    Gavin PD; Prescott M; Luff SE; Devenish RJ
    J Cell Sci; 2004 May; 117(Pt 11):2333-43. PubMed ID: 15126633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How rotating ATP synthases can modulate membrane structure.
    Almendro-Vedia V; Natale P; Valdivieso González D; Lillo MP; Aragones JL; López-Montero I
    Arch Biochem Biophys; 2021 Sep; 708():108939. PubMed ID: 34052190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.