BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 26515124)

  • 1. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.
    Dong SJ; Yi CF; Li H
    Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol.
    Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H
    J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae.
    Yi C; Wang F; Dong S; Li H
    Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indentation with atomic force microscope, Saccharomyces cerevisiae cell gains elasticity under ethanol stress.
    Niu YP; Lin XH; Dong SJ; Yuan QP; Li H
    Int J Biochem Cell Biol; 2016 Oct; 79():337-344. PubMed ID: 27613572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.
    Zhang K; Tong M; Gao K; Di Y; Wang P; Zhang C; Wu X; Zheng D
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):207-18. PubMed ID: 25475753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.
    Zheng DQ; Jin XN; Zhang K; Fang YH; Wu XC
    Bioresour Technol; 2017 May; 231():53-58. PubMed ID: 28192726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of flocculence of a self-flocculating yeast on its tolerance to ethanol and the mechanism].
    Hu CK; Bai FW; An LJ
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):123-8. PubMed ID: 15859341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
    Tao X; Zheng D; Liu T; Wang P; Zhao W; Zhu M; Jiang X; Zhao Y; Wu X
    PLoS One; 2012; 7(2):e31235. PubMed ID: 22363590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach.
    Li H; Ma ML; Luo S; Zhang RM; Han P; Hu W
    Int J Biochem Cell Biol; 2012 Jul; 44(7):1087-96. PubMed ID: 22504284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol.
    Ferreira RM; Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA
    Food Res Int; 2019 Jan; 115():352-359. PubMed ID: 30599952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.
    Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC
    Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of soya fatty acids on cassava ethanol fermentation.
    Xiao D; Wu S; Zhu X; Chen Y; Guo X
    Appl Biochem Biotechnol; 2010 Jan; 160(2):410-20. PubMed ID: 18769879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.
    Chen X; Xiao Y; Shen W; Govender A; Zhang L; Fan Y; Wang Z
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2449-58. PubMed ID: 26610799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation.
    Carvalho-Netto OV; Carazzolle MF; Rodrigues A; Bragança WO; Costa GG; Argueso JL; Pereira GA
    J Biotechnol; 2013 Dec; 168(4):701-9. PubMed ID: 23994268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol and the fluidity of the yeast plasma membrane.
    Jones RP; Greenfield PF
    Yeast; 1987 Dec; 3(4):223-32. PubMed ID: 3332975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of yeast immobilization on bioethanol production.
    Borovikova D; Scherbaka R; Patmalnieks A; Rapoport A
    Biotechnol Appl Biochem; 2014; 61(1):33-9. PubMed ID: 24180336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.