BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 26515662)

  • 21. Heavy Metal Uptakes by Myriophyllum verticillatum from Two Environmental Matrices: The Water and the Sediment.
    Sapci Z; Ustun EB
    Int J Phytoremediation; 2015; 17(1-6):290-7. PubMed ID: 25397988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental monitoring of heavy metals in Bulgarian Black Sea green algae.
    Strezov A; Nonova T
    Environ Monit Assess; 2005 Jun; 105(1-3):99-110. PubMed ID: 15952514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioaccumulation of heavy metals by green algae.
    Doshi H; Seth C; Ray A; Kothari IL
    Curr Microbiol; 2008 Mar; 56(3):246-55. PubMed ID: 18167026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.
    Lourie E; Gjengedal E
    Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran.
    Tabari S; Saravi SS; Bandany GA; Dehghan A; Shokrzadeh M
    Toxicol Ind Health; 2010 Nov; 26(10):649-56. PubMed ID: 20639278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of a stable isotope technique to determine the simultaneous uptake of cadmium, copper, nickel, lead, and zinc by the water flea Daphnia magna from water and the green algae Pseudokirchneriella subcapitata.
    Komjarova I; Blust R
    Environ Toxicol Chem; 2009 Aug; 28(8):1739-48. PubMed ID: 19290681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands.
    Madera-Parra CA; Peña-Salamanca EJ; Peña MR; Rousseau DP; Lens PN
    Int J Phytoremediation; 2015; 17(1-6):16-24. PubMed ID: 25174421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of biosorption of heavy metals using different types of algae.
    Romera E; González F; Ballester A; Blázquez ML; Muñoz JA
    Bioresour Technol; 2007 Dec; 98(17):3344-53. PubMed ID: 17624771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse.
    Lal Homagai P; Ghimire KN; Inoue K
    Bioresour Technol; 2010 Mar; 101(6):2067-9. PubMed ID: 20006923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from waste water: a comparative study.
    Saravanane R; Sundararajan T; Reddy SS
    Indian J Environ Health; 2002 Apr; 44(2):78-87. PubMed ID: 14503378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
    Ibrahim WM; Mutawie HH
    Toxicol Ind Health; 2013 Feb; 29(1):38-42. PubMed ID: 22661401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new approach to the remediation of heavy metal liquid wastes via off-gases produced by Klebsiella pneumoniae M426.
    Essa AM; Creamer NJ; Brown NL; Macaskie LE
    Biotechnol Bioeng; 2006 Nov; 95(4):574-83. PubMed ID: 16958139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Urban mosquitoes and filamentous green algae: their biomonitoring role in heavy metal pollution in open drainage channels in Nairobi industrial area, Kenya.
    Kinuthia GK; Ngure V; Kamau L
    BMC Ecol Evol; 2021 Oct; 21(1):188. PubMed ID: 34635056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.
    Shi T; Jia S; Chen Y; Wen Y; Du C; Guo H; Wang Z
    J Hazard Mater; 2009 Sep; 169(1-3):838-46. PubMed ID: 19427115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell.
    Zein R; Suhaili R; Earnestly F; Indrawati ; Munaf E
    J Hazard Mater; 2010 Sep; 181(1-3):52-6. PubMed ID: 20627410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous Removal of Heavy Metals (Cu, Cd, Cr, Ni, Zn and Pb) from Aqueous Solutions Using Thermally Treated Romanian Zeolitic Volcanic Tuff.
    Senila M; Neag E; Cadar O; Kovacs ED; Aschilean I; Kovacs MH
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35745064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.