These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 26515819)

  • 1. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
    Andreatta M; Nielsen M
    Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.
    Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M
    Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets.
    Nielsen M; Andreatta M
    Genome Med; 2016 Mar; 8(1):33. PubMed ID: 27029192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.
    Rasmussen M; Fenoy E; Harndahl M; Kristensen AB; Nielsen IK; Nielsen M; Buus S
    J Immunol; 2016 Aug; 197(4):1517-24. PubMed ID: 27402703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties.
    Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ
    Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules.
    Peters B; Tong W; Sidney J; Sette A; Weng Z
    Bioinformatics; 2003 Sep; 19(14):1765-72. PubMed ID: 14512347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.
    Bhasin M; Raghava GP
    J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.
    Lundegaard C; Lamberth K; Harndahl M; Buus S; Lund O; Nielsen M
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W509-12. PubMed ID: 18463140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network.
    Brusic V; Rudy G; Honeyman G; Hammer J; Harrison L
    Bioinformatics; 1998; 14(2):121-30. PubMed ID: 9545443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions.
    Larsen MV; Lundegaard C; Lamberth K; Buus S; Brunak S; Lund O; Nielsen M
    Eur J Immunol; 2005 Aug; 35(8):2295-303. PubMed ID: 15997466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution.
    Jiang L; Yu H; Li J; Tang J; Guo Y; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules.
    Andreatta M; Jurtz VI; Kaever T; Sette A; Peters B; Nielsen M
    Immunology; 2017 Oct; 152(2):255-264. PubMed ID: 28542831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.