These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26516781)

  • 1. Characterization of Pores in Dense Nanopapers and Nanofibrillated Cellulose Membranes: A Critical Assessment of Established Methods.
    Orsolini P; Michen B; Huch A; Tingaut P; Caseri WR; Zimmermann T
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25884-97. PubMed ID: 26516781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.
    Kennard R; DeSisto WJ; Giririjan TP; Mason MD
    J Chem Phys; 2008 Apr; 128(13):134710. PubMed ID: 18397097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the nanostructure of micrometer-sized cellulose beads.
    Thünemann AF; Klobes P; Wieland C; Bruzzano S
    Anal Bioanal Chem; 2011 Sep; 401(4):1101-8. PubMed ID: 21710284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into Pore Size Control in Cellulose Nanopapers Through Modeling and Experiments.
    Szekeres GP; Nemeth Z; Schrantz K; Hernadi K; Graule T
    J Nanosci Nanotechnol; 2018 Apr; 18(4):3000-3005. PubMed ID: 29442986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.
    Eita M; Arwin H; Granberg H; Wågberg L
    J Colloid Interface Sci; 2011 Nov; 363(2):566-72. PubMed ID: 21868023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrillated Cellulose Templated Membranes with High Permeance.
    Orsolini P; Marchesi D'Alvise T; Boi C; Geiger T; Caseri WR; Zimmermann T
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33943-33954. PubMed ID: 27960366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials.
    Li J; Cheng R; Xiu H; Zhang M; Liu Q; Song T; Dong H; Yao B; Zhang X; Kozliak E; Ji Y
    Carbohydr Polym; 2018 Dec; 201():141-150. PubMed ID: 30241805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of hemophan hemodialysis membranes by thermoporometry.
    Broek AP; Bargeman D; Sprengers ED; Smolders CA
    Int J Artif Organs; 1992 Jan; 15(1):25-8. PubMed ID: 1551724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion.
    Kenvin J; Jagiello J; Mitchell S; Pérez-Ramírez J
    Langmuir; 2015 Feb; 31(4):1242-7. PubMed ID: 25603366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose.
    Cervin NT; Andersson L; Ng JB; Olin P; Bergström L; Wågberg L
    Biomacromolecules; 2013 Feb; 14(2):503-11. PubMed ID: 23252421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of porous materials for bioseparation.
    Barrande M; Beurroies I; Denoyel R; Tatárová I; Gramblicka M; Polakovic M; Joehnck M; Schulte M
    J Chromatogr A; 2009 Oct; 1216(41):6906-16. PubMed ID: 19740472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications.
    Le Bras D; Strømme M; Mihranyan A
    J Phys Chem B; 2015 May; 119(18):5911-7. PubMed ID: 25885570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of pore structure of a strong anion-exchange membrane adsorbent under different buffer and salt concentration conditions.
    Tatárová I; Fáber R; Denoyel R; Polakovic M
    J Chromatogr A; 2009 Feb; 1216(6):941-7. PubMed ID: 19117574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.
    Torres-Rendon JG; Schacher FH; Ifuku S; Walther A
    Biomacromolecules; 2014 Jul; 15(7):2709-17. PubMed ID: 24947934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.